摘要
为了有效降解废水中的阿特拉津(ATZ),采用共沉淀法将钴基-普鲁士蓝类似物(CoCo-PBA)负载于层状双金属氢氧化物C Fe-LDH上,制得复合材料CoCo-PBA@CuFe-LDH,用于活化过一硫酸盐(PMS)降解ATZ。通过考察降解过程的主要影响因素,发现提高催化剂CoCo-PBA@CuFeLDH用量和反应温度有利ATZ的降解;PMS用量过多会对ATZ的降解产生轻微的抑制作用;过酸和过碱的环境都对ATZ降解产生不利影响;体系中存在的HCO-3,H2PO4-和Cl-等离子对ATZ的降解均表现出了一定的抑制作用。研究得到了CoCo-PBA@CuFe-LDH/PMS体系降解ATZ的较优反应条件为ATZ浓度15 mg·L^(-1),催化剂用量50 mg·L^(-1),PMS用量300 mg·L^(-1),初始p H值为6.3,反应温度298 K。当反应15 min后,ATZ的降解率可达到99.5%。循环使用4次后,ATZ的降解率仍达到83.4%,表明Co Co-PBA@Cu Fe-LDH具有较好的催化活性和重复使用性。另外,研究发现CoCo-PBA@CuFe-LDH活化PMS降解ATZ体系中,可以同时产生SO_(4)^(·-)和·OH_(2)种自由基,SO_(4)^(·-)对ATZ的降解起到更关键的作用。
In order to effectively degrade atrazine( ATZ) in wastewater,CoCo-PBA@ CuFe-LDH composite was prepared by using co-precipitation method to load cobalt-based Prussian blue analogue( CoCoPBA) on the layered double hydroxides CuFe-LDH,which was used to activate peroxymonosulfate( PMS) for ATZ degradation. Investigating of the main influencing factors of the degradation process revealed that increase of CoCo-PBA@ CuFe-LDH dosage and temperature were all favorable to ATZ degradation;excessive dosage of PMS has a slight inhibitory effect on ATZ degradation;over-acidic and overalkaline environments were not beneficial to ATZ degradation;the presence of HCO_(3)^(-),H_(2) PO_(4)^(-),and Cl^(-)ions in the system all showed certain inhibitory effects on ATZ degradation. The optimal reaction conditions for the degradation of ATZ in CoCo-PBA@ CuFe-LDH/PMS system were as follows: 15 mg·L^(-1) ATZ,300 mg·L^(-1) PMS,50 mg·L^(-1) CoCo-PBA@ CuFe-LDH,initial p H 6. 3,and temperature 298 K,and the degradation rate of ATZ was up to 99. 5% after 15 min. After 4 times of recycling,the degradation rate of ATZ still reached 83. 4%,indicating that CoCo-PBA@ CuFe-LDH had good catalytic activity and reusability. In addition,the study found that sulfate radicalsSO_(4)^(·-)and hydroxyl radicals(·OH) were generated simultaneously in the CoCo-PBA@ CuFe-LDH/PMS system,and SO_(4)^(·-)played a more critical role in the degradation of ATZ.
作者
马晓
王燕
李国兵
蔡旺锋
Ma Xiao;Wang Yan;Li Guobing;Cai Wangfeng(School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China)
出处
《化学工业与工程》
CAS
CSCD
北大核心
2021年第2期9-18,共10页
Chemical Industry and Engineering