期刊文献+

多因素耦合作用下的车辆群事故伤害程度估计 被引量:3

Estimation of Accident Injury Severity of Vehicle Groups Considering Multi-factor Coupling
下载PDF
导出
摘要 为了深入探究多因素耦合作用下公路车辆群事故伤害影响因素,提取美国得克萨斯州2016年的公路碰撞数据,从4个方面(道路特性、驾驶员特性、车辆特征、环境因素)选择21个备选因素,构建考虑异质性的公路车辆群事故随机参数Logit模型,同时利用边际效应公式计算每个因素对碰撞伤害程度大小的影响。结果表明:驾驶员性别、年龄、是否都使用安全带、安全气囊起爆与否等15个单因素,以及都系安全带-安全气囊起爆、老年驾驶员-大货车等4个耦合因素均与公路车辆群事故伤害程度显著相关,且"道路限速值>100 km/h"与"安全气囊起爆与否"这2个参数对公路车辆群事故伤害程度的影响具有差异性。研究结果对降低公路车辆群事故严重程度有一定指导作用。 In order to explore the influencing factors and their heterogenous impacts on vehicle groups accident under the multi-factor coupling effect,a random parameter logit model was developed based on 21 types of alternative factors in 4 aspects( road characteristics,driver characteristics,vehicle characteristics,environmental factors) from the road crash data of Texas in 2016. And the marginal effect formula was used to measure the impact of each factor on the level of collision damage. The model estimation results showed that 15 types of single factors such as driver gender,age,the use of seat belts,the release of airbags,and 4 coupling factors such as all seat belts-airbag initiation,elderly drivers-large trucks were significantly related to the degree of road vehicle accident injury;road speed limited >100 km/h,and the release of airbags had differences in the degree of injury from different accidents. The research results could have a certain guiding role in reducing the severity of highway multi-vehicle accidents.
作者 靳文舟 姚尹杰 JIN Wenzhou;YAO Yinjie(School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510641,China)
出处 《郑州大学学报(工学版)》 CAS 北大核心 2021年第3期1-7,共7页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(52072128)。
关键词 公路车辆群 伤害程度 随机参数 多因素耦合 差异性 highway vehicle group injury degree random parameters multi-factor coupling heterogeneity
  • 相关文献

参考文献2

二级参考文献13

  • 1侯志祥,吴义虎,刘振闻,李河清.高速公路汽车追尾模型[J].交通运输工程学报,2004,4(4):37-39. 被引量:10
  • 2Chatterjee,Kiron.Modelling the dynamics of bus use in a changing travel environment using panel data. Transportation . 2011
  • 3Borgers A W J,Smeets I M E,Kemperman A D A M,etal.Simulation of micro pedestrian behaviour in shoppingstreets. Progress inDesign&Decision; Support Systems . 2006
  • 4R. Haaijer,W. Kamakura,M. Wedel.The ‘no-choice’ alternative in conjoint choice experiments. International Journal of Market Research . 2001
  • 5Juan de Dios Ortuzar.Nested logit models for mixed-mode travel in urban corridors. Transportation Research Part A: General . 1983
  • 6LeSage,James P.Bayesian Estimation of Limited Dependent-Variable Spatial Autoregressive Models. Geographical Analysis . 2000
  • 7Louviere,J.J,D.A Hensher,and J.D.Swait.Stated Choice M ethods Analysis and Application. Analysis and Applications . 2000
  • 8McFadden,D.Modeling the Choice of Residential Location. Transportation Research . 1978
  • 9Suárez,A,del Bosque,I.R.,Rodríguez-Poo,J.M.,Moral,I.Accounting for heterogeneity in shopping centre choice models. Journal of Retailing . 2004
  • 10Thomas Treiman,Justine Gartner.Are Residents Willing to Pay for their Community Forests? Results of a Contingent Valuation Survey in Missouri, USA. Urban Studies . 2006

共引文献49

同被引文献47

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部