期刊文献+

动力电池综合参数自动分选成组技术 被引量:1

Power Battery Automatic Sorting and Grouping Technology Based on Comprehensive Parameters
下载PDF
导出
摘要 目前在电池分选及成组过程中,大多数企业还不能完全实现自动化,需要靠人工辅助完成整个作业,因此本文提出采用基于改进的模糊聚类算法,利用电池自动检测平台并结合尺寸链优化技术,实现电池分选成组的自动化。首先,利用自动检测平台获取动力电池性能参数。然后,使用智能算法对电池进行首次分选。最终,对首次分选后的电池利用尺寸链优化技术实现电池成组。实验表明,此方案可以在动态流水线上自动完成电池的分选和成组,不仅保证了电池的电性能和几何性能,而且减少了工人作业时间,提高了企业的生产效率,满足企业的需求。 At present,in the process of battery sorting and grouping,most enterprises can’t fully realize automation and need to re⁃ly on manual assistance to complete the whole operation.Therefore,this paper proposes an improved fuzzy clustering algorithm,uti⁃lize the battery automatic detection platform and use the dimensional chain optimization technology to realize the automation of battery sorting and grouping.First,the power battery performance parameters are obtained using an automatic detection platform.Then,the battery is first sorted using an intelligent algorithm.Finally,the first sorting battery uses the size chain optimization tech⁃nology to achieve battery grouping.The experimental results show that this scheme can automatically complete the sorting and grouping of batteries on the dynamic assembly line,which not only ensures the electrical and geometric performance of the battery,but also reduces the working time of workers,improves the production efficiency of enterprises and meets the needs of enterprises.
作者 辛传福 赵凤霞 武钰瑾 高建设 XIN Chuan-fu;ZHAO Feng-xia;WU Yu-jin;GAO Jian-she(School of Mechanical Engineering,Zhengzhou University,He’nan Zhengzhou 450001,China)
出处 《机械设计与制造》 北大核心 2021年第7期133-136,共4页 Machinery Design & Manufacture
基金 基于物料特征识别和作业轨迹优化的电池包智能制造(2018YFB0104101)。
关键词 电池分选 电池成组 自动化 模糊聚类算法 Battery Sorting Battery Grouping Automation Fuzzy Clustering Algorithm
  • 相关文献

参考文献6

二级参考文献44

  • 1周水庚,周傲英,金文,范晔,钱卫宁.FDBSCAN:一种快速 DBSCAN算法(英文)[J].软件学报,2000,11(6):735-744. 被引量:42
  • 2张新波.两阶段模糊C-均值聚类算法[J].电路与系统学报,2005,10(2):117-120. 被引量:21
  • 3王有山,孙力生,王海博.电动车电池配组问题探析[J].蓄电池,2007,44(2):78-81. 被引量:8
  • 4TAN P N,STEINBACH M,KUMAR V.数据挖掘导论[M].范明,范宏建,等译.北京:人民邮电出版社,2006.
  • 5Mac Q J. Some Methods for Classification and Analysis of Multivariate Observations [ C ] // Proc of Fifth BerkeleySymposium on Math. Stat and Prob : University of California Press, 1967:281 - 297.
  • 6Christian M, Diem H. Clustering by Kernel Density[ J ]. Computational Economics ,2007,29 (2) : 199 - 212.
  • 7Nasibov E N, Ulutagay G. Robustness of Density-based Clustering Methods with Various Neighborhood Relations [ J]. Fuzzy Sets and Systems,2009,160(24) :3601 -3615.
  • 8Bicici E, Yuret D. Locally Scaled Density Based Clustering[ C ]//The 8th International Conference on Adaptive and Natural Computing Algorithms. Berlin : Springer-Verlag ,2007:739 - 748.
  • 9Parsons L, Haque E, Liu H. Subspace Clustering for High Dimensional Data : A Review [ J ]. Sigkdd Explorations, 2004,6 (1) :90 - 105.
  • 10Iris Data Set (UCI) [ DB/OL]. [ 2012 -09 - 10 ]. http ://www. datatang, corn/data/551.

共引文献44

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部