摘要
在完全液相法制备工艺中,考察不同Si含量对浆状CuZnAl催化剂上合成气直接制备二甲醚性能的影响。其中,SA0.5催化剂(Si/Al=0.5)显示了最优异的催化性能,CO转化率为63.31%,二甲醚选择性为72.96%,在反应480 h过程中催化剂催化性能稳定。通过X射线衍射(XRD)、透射电子显微镜(TEM)和氮气吸附-脱附表征发现,Si的引入促进了催化剂Cu物种颗粒的分散及比表面积的增大,提高了CO转化率。此外,氢气程序升温还原(H2-TPR)和X射线光电子能谱(XPS)表征揭示了Cu物种与催化剂其他组分(Si物种)之间存在电子相互作用,抑制了Cu物种还原,催化剂表面富集更多Cu^(+)物种,有利于甲醇合成,同时有效地抑制了水煤气副反应产物CO_(2)的生成。再者,SA0.5催化剂表面富集了大量的Al物种(AlOOH),有利于甲醇脱水,促进二甲醚的生成。总之,浆状CuZnAlSi体系中Cu^(+)和AlOOH协同催化作用,提高了催化剂活性及二甲醚选择性。
The effect of Si content on the performance of slurry CuZnAl catalyst prepared by complete liquid phase technology for direct synthesis of dimethyl ether from syngas was investigated.Among them,catalyst with Si/Al ratio of 0.5 showed the best catalytic performance with the CO conversion of 63.31%and the dimethyl ether selectivity of 72.96%.The catalyst was stable after 480 h reaction.As revealed by the X-ray diffraction(XRD),transmission electron microscopy(TEM)and nitrogen adsorption and desorption characterizations,the introduction of Si promoted the dispersion of Cu species nanoparticles and led to increased specific surface area,which was beneficial for improving the CO conversion.Besides,temperature programmed reduction(H2-TPR)and X-ray photoelectron spectroscopy(XPS)characterizations showed that an electronic interaction between Cu species and other components of the catalyst(especially,Si species)could inhibit the reduction of Cu species,resulting in the abundant Cu^(+)species on the catalyst surface.This was conducive to the synthesis of methanol and could effectively inhibit the formation of CO_(2),which was a by-product of the water-gas shift reaction.Moreover,a large amount of Al species(AlOOH)was enriched on the SA0.5 catalyst surface,which might contribute to the dehydration of methanol to produce dimethyl ether.In conclusion,the synergetic catalysis of Cu^(+)and AlOOH in slurry CuZnAlSi system improved the catalytic activity and dimethyl ether selectivity.
作者
孙凯
边仲凯
程淑艳
王贵儒
张琳
黄伟
SUN Kai;BIAN Zhong-kai;CHENG Shu-yan;WANG Gui-ru;ZHANG Lin;HUANG Wei(School of Chemical and Biological Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China;State Key Laboratory of Clean and Efficient Coal Utilization,Taiyuan University of Technology,Taiyuan 030024,China;College of Environment and Resource,Shanxi University,Taiyuan 030006,China)
出处
《燃料化学学报》
EI
CAS
CSCD
北大核心
2021年第6期791-798,共8页
Journal of Fuel Chemistry and Technology
基金
太原科技大学博士启动基金(20192064,20192060)
山西省青年基金(201901D211297)
来晋工作优秀博士奖励基金(20202015)
国家自然科学基金(21975173)资助。