期刊文献+

Short-term prediction of NO_(2) and NO_(x) concentrations using multilayer perceptron neural network: a case study of Tabriz, Iran

原文传递
导出
摘要 Introduction:Due to the health effects caused by airborne pollutants in urban areas,forecasting of air quality parameters is one of the most important topics of air quality research.During recent years,statistical models based on artificial neural networks(ANNs)have been increasingly applied and evaluated for forecasting of air quality.Methods:The development of ANN and multiple linear regressions(MLRs)has been applied to short-term prediction of the NO_(2) and NO_(x) concentrations as a function of meteorological conditions.The optimum structure of ANN was determined by a trial and error method.We used hourly NO_(x) and NO_(2) concentrations and metrological parameters,automatic monitoring network during October and November 2012 for two monitoring sites(Abrasan and Farmandari sites)in Tabriz,Iran.Results:Designing of the network architecture is based on the approximation theory of Kolmogorov,and the structure of ANN with 30 neurons had the best performance.ANN trained by scaled-conjugate-gradient(trainscg)training algorithm has implemented to model.It also demonstrates that MLP neural networks offer several advantages over linear MLR models.The results show that the correlation coefficient(R2)values are 0.92 and 0/94 for NO_(2) and NO_(x) concentrations,respectively.But in MLR model,R2 values were 0.41 and 0.44 for NO_(2) and NO_(x) concentrations,respectively.Conclusions:This work shows that MLP neural networks can accurately model the relationship between local meteorological data and NO_(2) and NO_(x) concentrations in an urban environment compared to linear models.
作者 Akbar Rahimi
出处 《Ecological Processes》 SCIE EI 2017年第1期21-29,共9页 生态过程(英文)
  • 相关文献

二级参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部