摘要
LSTM网络模型相较于一般曲线拟合方法具有容错性好、记忆功能强等显著优势,可有效识别并保存已有数据中的隐藏信息特征。基于以上优势,构建针对高速公路路基长期沉降预测的LSTM神经网络模型,进一步利用高速公路路基长期沉降特征的时序化特点,基于LSTM神经网络模型对其进行预测,结果表明:所构建LSTM模型可有效表征高速公路路基长期沉降的非线性特征,相比较于指数曲线法而言,其误差低,预测精度较高。
出处
《湖南交通科技》
2021年第2期94-97,共4页
Hunan Communication Science and Technology