摘要
研究了高维空间上具有空变系数的混合抛物系统在非线性边界条件下的解的爆破问题.通过构造能量表达式,运用Sobolev不等式及其他微分不等式的技巧,得到了该能量方程所满足的微分不等式,最后积分推出了解的爆破时间下界的估计.
In our report,the blow up problem for mixed parabolic systems with space dependent coefficients under nonlinear boundary conditions in high dimensional spaces was studied. An energy expression was formulated,a Sobolev inequality and other differential inequalities were used to obtain a differential inequality which can be satisfied by the energy. Then,the lower bound estimates of blow up time were deduced.
作者
欧阳柏平
肖胜中
Ouyang Baiping;Xiao Shengzhong(College of Data Science,Guangzhou Huashang College,Guangzhou 511300,China;Scientific Research Department,Guangdong AIB Polytechnic College,Guangzhou 510507,China)
出处
《海南大学学报(自然科学版)》
CAS
2021年第2期117-124,共8页
Natural Science Journal of Hainan University
基金
国家自然科学基金(11371175)
广东省普通高校重点项目(自然科学)(2019KZDXM042)
广东省普通高校创新团队项目(2020WCXTD008)
广东财经大学华商学院校内项目(2020HSDS01)。
关键词
爆破
非线性边界条件
抛物系统
空变系数
blow-up
nonlinear boundary condition
parabolic system
space dependent coefficient