期刊文献+

人工神经网络预测并行查询响应时间 被引量:3

Predicting response time of parallel queries with artificial neural network
下载PDF
导出
摘要 针对现有查询响应时间预测统计模型存在准确率无法提高、特征选取单一、动态性差的问题,综合考虑查询计划、查询交互两大因素,提出采用结构简单、易搭建的人工神经网络——全连接神经网络预测并行查询响应时间。采集查询计划与查询交互数据作为输入特征,查询真实的响应时间作为预测标签,训练模型,进行预测。此方法不需要预先知道样本数据的数学模型函数,仅通过对样本数据集的学习建立模型,建模过程简单,可达较好的预测效果。实验结果表明,全连接神经网络模型准确率高达79.99%,较当前代表性的统计模型提高约6%。 To resolve the problems of existing statistical models that the accuracy rate cannot be improved,the feature selection is single,and the dynamicity is poor,the fully connected neural network was used for predicting the response time of parallel queries through considering the influences of query plan and query interaction.A concise and easy neural network possessed was used to build structure.The data of query plan and query interaction were collected as input features,and the practical response time of queries was used as the prediction label.The fully connected neural network could get trained and yielded models for predicting.The method dis not require the mathematical model function of sample data in advance and could achieve a better prediction performance with a simple modeling process,models were learned and trained for collected sample dataset.Experimental results show that the model proposed achieves an accuracy with 79.99%,which performs roughly 6%higher than the state-of-the-art statistical model.
作者 刘冬燕 牛保宁 张锦文 LIU Dong-yan;NIU Bao-ning;ZHANG Jin-wen(College of Information and Computer,Taiyuan University of Technology,Jinzhong 030600,China;Software R&D Department,North Automatic Control Technology Institute,Taiyuan 030006,China)
出处 《计算机工程与设计》 北大核心 2021年第7期2087-2093,共7页 Computer Engineering and Design
基金 国家重点研发计划子课题基金项目(2017YFB1401001-01) 山西省重点研发计划基金项目(国际科技合作)(201903D421007)。
关键词 人工神经网络 全连接神经网络 查询交互 查询计划 查询响应时间 统计模型 artificial neural network fully connected neural network query interaction query plan query response time statistical model
  • 相关文献

参考文献3

二级参考文献19

  • 1Duggan J,Cetintemel U, Papaernmanouil O, et al. Performance predic- tion for concurrent database workloads [ C ]. Proc. of 2011 ACM SIG- MOD Conference( SIGMOD'2011 ) ,Athens, Greece ,2011:337-348.
  • 2Ahmad M, Aboulanaga A, Babu S, et al. Modeling and exploiting query interaction in database systems[ C ]. Proc. of the 17th Confer- ence on Information and Knowledge Management ( CIKM'2008 ), Napa Valley, US ,2008 : 183-192.
  • 3Chandhuri S, Narasayya V, Ramamurthy R. Estimating progress of long running SQL queries[ C]. Proc. of 2004 ACM SIGMOD Con- ference (SIGMOD'2004) ,Paris,France,2004:803-814.
  • 4Gupta C, Mehta A, Dayal U. PQR:prediction query execution times for autonomous workload management[ C~. Proc. of the 5th Inter- national Conference on Autonomic Computing ( ICAC'2008 ), Chi- cago, USA, 2008 : 13-22.
  • 5Ahmad M, AboulanagaA, Babu S, et al. Qshuffler: getting the query mix right [ C ]. Proc. of the 24th International Conference on Data Engineering ( ICDE'2008 ), Cancun, Mexico,2008 : 1415-1417.
  • 6TMF GB917-2 v2. 5-2005. SLA management hand-book~ S ]. 2005.
  • 7Mckay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of out put from a computer code [ J 3. Tectmomctrics ,2000,44 (1) :202-208.
  • 8Mayer V, Cukier K. Big data: a revolution that will transform how we live, work and think [ M ]. Hangzhou :Zhejiang People's Publish- ing House ,2012.
  • 9Ahmad M, Duan S, Aboulanaga A, et al. Predicting completion times of bath query workloads using interaction-aware models and simulation[Cl. Proc. of the 14th International Conference on Ex- tending Database Technology ( EDBT' 2011 ), Uppsala, Sweden, 2011:449-460.
  • 10Ahmad M, Duan S, Aboulanaga A, et al. Interaction-aware schedu- ling of report generation workloads[ J]. The VLDB Journal,2011, 20(4) :589-615.

共引文献18

同被引文献37

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部