摘要
为高效、稳定地求解建设工程项目管理过程中的多资源均衡问题,提出一种基于子集模拟的优化算法.多资源均衡问题中,如直接采用工序计划开始时间作为决策变量,在优化算法的实现时易违反工序间的逻辑关系.为避免该问题,本文采用工序计划开始时间的间隔率变量表示(在二者的映射中考虑工序间的逻辑关系),并据此建立间隔率变量表示的建设工程项目多资源均衡优化模型,以简化基于子集模拟的优化算法的操作流程.通过算例验证,与目前应用较广的遗传算法相比,本文提出的优化算法在最优解的获取稳定性上有较大改进.
In this paper,an efficient optimization algorithm based on subset simulation is proposed for solving the resource leveling problem of construction projects with multiple resources.In the resource leveling problem,if the decision variables are chosen to be the scheduled starting time for the involved activities,the logical relationship between the activities may be violated during the implementation of the optimization algorithm.In order to avoid this problem,the interval rate variables are introduced to substitute the scheduled starting time in modeling the resource leveling problem of construction projects with multiple resources so as to simplify the procedures of the proposed optimization algorithm based on subset simulation.As shown in the illustrative example,compared with the widely used genetic algorithm,the proposed optimization algorithm can obtain higher improvement in the stability of achieving the optimal solution.
作者
王家
刘可心
张学清
陈涛
WANG Jia;LIU Kexin;ZHANG Xueqing;CHEN Tao(College of Civil Engineering,Hunan University,Changsha 410082,China;National Center for International Research Collaboration in Building Safety and Environment,Hunan University,Changsha 410082,China;Department of Civil and Environmental Engineering,Hong Kong University of Science and Technology,Hong Kong 999077,China;Changsha Midea Real Estate Development Co Ltd,Changsha 410082,China)
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2021年第7期168-176,共9页
Journal of Hunan University:Natural Sciences
基金
中国博士后科学基金资助项目(2017M622575)。
关键词
资源均衡问题
子集模拟
马尔科夫链蒙特卡罗
间隔率
遗传算法
resource levelling problem
subset simulation
Markov chain Monte Carlo simulation
interval rate
genetic algorithm