摘要
【目的】复杂多变的网络攻击活动对网络安全工作带来了严峻挑战。将知识图谱引入网络安全领域,有助于刻画展现安全态势,支持安全决策和预警预测。【方法】本文综述了目前国内外知识图谱相关技术的研究进展及其在网络安全领域的应用现状。【结果】在此基础上,阐述了构建网络安全知识图谱的技术架构,定义了网络安全本体模型,采用深度学习的方法进行实体抽取和关系抽取,利用基于规则和基于知识表示学习的方法进行图谱推理,实现网络安全知识补全和分析挖掘。
[Objective]Complex and changeable network attack activities bring severe challenges to network security.Introducing the knowledge graph into the field of network security is helpful to security situation depiction,security decision-making support,and early warning prediction.[Methods]This paper summarizes the research progress of knowledge graph technology at home and abroad and its application in the field of network security.[Results]On this basis,this paper expounds the technical framework of constructing the network security knowledge graph,defines the network security ontology model,uses the method of deep learning to extract entities and relations,uses rule-based and knowledge-based representation methods to carry out graph reasoning,and achieves the network security knowledge complement and analysis mining.
作者
李序
连一峰
张海霞
黄克振
LI Xu;LIAN Yifeng;ZHANG Haixia;HUANG Kezhen(University of Chinese Academy of Sciences,Beijing 100049,China;Trusted Computing and Information Assurance Laboratory,Institute of Software Chinese Academy of Sciences,Beijing 100190,China)
出处
《数据与计算发展前沿》
CSCD
2021年第3期9-18,共10页
Frontiers of Data & Computing
基金
国家重点研发计划“网络空间地理图谱构建与智能认知关键技术研究”(2020YFB806500)
课题四“基于网络空间地理图谱的网络安全行为智能认知技术研究”(2020YFB806504)。
关键词
网络安全
知识图谱
深度学习
威胁情报
cyber security
knowledge graph
deep learning
threat intelligence