期刊文献+

基于概率选择的主动学习智能软测量建模 被引量:1

Active Learning Intelligent Soft Sensor based on Probability Selection
下载PDF
导出
摘要 针对复杂工业过程中有标签样本少,样本标记成本高等问题,提出一种基于概率选择的主动学习软测量建模方法。该方法首先采用主成分分析对无标签样本进行子空间集成;然后基于所有子学习器的输出,计算无标签样本的不确定度,从而对无标签样本进行信息评估,选取最有价值的样本进行人工标记;最后通过分析无标签样本和有标签样本的作用,引入训练集的性能指标完成对终止条件的设计。通过实际工业过程数据的应用仿真,验证了所提方法在减小标记代价的同时,还能够实现模型精度的提高。 Aiming at lack of tag samples and high cost of sampling tags in complex industrial processes, an active learning algorithm based on probability selection is proposed. Firstly, unlabeled samples are performed subspace integration by using the principal component analysis. Then, the information of unlabeled samples is evaluated by the uncertainty, which is calculated based on the out put of all sub learners. And the most valuable samples are selected to mark manually. Finally, the function of unlabeled samples and labeled samples are analyzed, and the termination conditions are designed by introducing the performance index of training set. Through simulations of industrial processes data, it is verified that the proposed method can improve the accuracy of the model while reducing the cost of marking.
作者 代学志 熊伟丽 Dai Xuezhi;Xiong Weili(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122,China;Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education),Jiangnan University,Wuxi 214122,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2021年第6期1350-1357,共8页 Journal of System Simulation
基金 国家自然科学基金(61773182) 国家重点研发计划子课题(2018YFC1603705-03) 江苏高校“青蓝工程”。
关键词 概率选择 软测量 子学习器 不确定度 终止条件 probability selection soft sensor sub learners uncertainty termination conditions
  • 相关文献

参考文献7

二级参考文献158

  • 1刘毅,王海清.采用最小二乘支持向量机的青霉素发酵过程建模研究[J].生物工程学报,2006,22(1):144-149. 被引量:27
  • 2苏国韶,燕柳斌,张小飞,江权.基坑位移时间序列预测的高斯过程方法[J].广西大学学报(自然科学版),2007,32(2):223-226. 被引量:24
  • 3赵振宇.模糊理论和神经网络的基础与应用.北京:清华大学出版社,1997
  • 4杨尔辅,徐用懋.一种小波-神经网络多变量混凝土合过程模型及其应用[J].自动化学报,2000,(增刊):153-157.
  • 5[4]Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks [J].IEEE Transactions on Neural Networks, March 1991,2(2):302-309.
  • 6[5]Dente M, et al. Detailed prediction of olefin yields from hydrocarbon pyrolysis through a fundamental simulation model (SPYRO) [J].Computers & Chemical Engineering,1979,(13):61-75.
  • 7[6]Kumar P, Kunzru D.Modeling of naphtha pyrolysis [J].Ind Eng Chem Process Des Dev,1985,24(3):744-782.
  • 8Smits G F,Jordaan E M.Improving SVM Regression Using Mixtures of Kernels[J].IEEE Proceedings of the 2002 International Joint Conference on Neural Networks,2002,3:2785-2790.
  • 9Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1995.
  • 10Evgeniou T,Pontil M,Poggio T.Regularization Networks andSupport Vector Machines[J].Advance in Computational Mathematics,2000,13:1-50.

共引文献270

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部