期刊文献+

Computational fluid dynamic(CFD)simulation of pilot operated intermittent gas lift valve 被引量:1

原文传递
导出
摘要 To design an efficient intermittent gas-lift installation,reliable information is needed in the performance of all process components,from the outer boundary of the reservoir to the surface separators.The gas lift valve is the one critical component that affects the design of the whole system.In intermittent producing system,the pilot gas-lift valve is extremely used to control the point of compressed gas entry into the production tubing and acts as a pressure regulator.A novel approach using computational fluid dynamics simulation was performed in this study to develop a dynamic model for the gas passage performance of a 1-in.,Nitrogen-charged,pilot gas-lift valve.Dynamic performance curves were obtained by using Methane as an injection gas with flow rates reaching up to 4.5 MMscf/day.This study investigates the effect of internal pressure,velocity and temperature distribution within the pilot valve that cannot be predicted in the experiments and mathematical models during the flow-performance studies.A general equation of the nonconstant discharge coefficient has been developed for 1-inch pilot valve to be used for further calculation in the industry without using CFD model.The developed model significantly reduces the complexity of the data required to calculate the discharge coefficient.
出处 《Petroleum Research》 2020年第3期254-264,共11页 石油研究(英文)
基金 This study was carried out as part of the EFOP-3.6.1-16-2016-00011"Younger and Renewing University一Innovative Knowledge City-institutional development of the University of Miskolc aiming at intelligent specialization"project implemented in the framework of the Szechenyi 2020 program.The realization of this project is supported by the European Union,co-financed by the European Social Fund.
  • 相关文献

参考文献1

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部