期刊文献+

原子力显微镜的分数阶PID控制设计 被引量:1

Design of fractional PID control for atomic force microscope
下载PDF
导出
摘要 原子力显微镜(AFM)是测量材料物体表面形貌的重要工具。为了实现AFM的高速扫描成像,设计一种基于分数阶前馈-反馈PID控制算法的AFM扫描成像控制器。将分数阶迭代学习控制(FOILC)用于前馈回路,在跟踪过程中对当前周期的误差信息进行学习,实现输出沿迭代轴的快速收敛;在反馈回路中采用分数阶比例积分(FOPI)控制增加高速成像时的精度。轨迹跟踪仿真和实验成像结果表明,该算法能有效提高AFM成像速度和改善系统非线性的影响,在扫描频率为25 Hz时,控制精度达到10-5量级,AFM成像质量得到显著提高。 Atomic force microscope(AFM) is an important tool for measuring the surface morphology of material objects. In order to realize the high-speed scanning imaging of AFM, an AFM scanning imaging controller based on a Fractional Feedforward-Feedback PID control algorithm is designed. Use fractional-order iterative learning control(FOILC) in the feedforward loop to learn the error information of the current period in the tracking process to achieve rapid output convergence along the iterative axis;use fractional-order proportional integral(FOPI) control in the feedback loop Increase the accuracy of high-speed imaging. The trajectory tracking simulation and experimental imaging results show that the algorithm can effectively increase the AFM imaging speed and improve the system’s nonlinear impact. When the scanning frequency is 25 Hz, the control accuracy reaches 10-5. AFM imaging quality has been significantly improved.
作者 赵田锋 许红梅 李岩 陈诚 Zhao Tianfeng;Xu Hongmei;Li Yan;Chen Cheng(School of Electronics and Information Engineering,Changchun University of Science and Technology,Changchun 130022,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2021年第5期91-99,共9页 Journal of Electronic Measurement and Instrumentation
基金 科技部国家重点研发计划项目(2017YFE0112100) 吉林省国际合作项目(20180414002GH)资助。
关键词 原子力显微镜 分数阶控制 分数阶迭代学习 高速扫描成像 atomic force microscope fractional order control fractional-order iterative learning high-speed scanning imaging
  • 相关文献

参考文献5

二级参考文献64

  • 1梁军,符雪桐,吕勇哉.自适应PID控制──I.基本原理与算法[J].浙江大学学报(自然科学版),1994,28(5):523-529. 被引量:13
  • 2党选举,谭永红.基于灰色理论的压电陶瓷迟滞特性的神经网络建模研究[J].仪器仪表学报,2005,26(9):913-916. 被引量:5
  • 3Binnig G, Quate C, Gerber C. Atomic Force Microscopy [J]. Physical Review Letters (S0031-9007), 1986, 56(9): 930-933.
  • 4Franz J Giessibl. Advances in atomic force microscopy [J]. Reviews of Modern Physics (S0034-6861), 2003, 75(3): 949-983.
  • 5M Guthold, M R Falvo, W G Matthews, Swashbttrn S Paulson, D A Erie. Controlled manipulation of molecular samples with the nanomanipulator [J]. IEEE/ASME Transactions on Mechatronies (S1083-4435), 2000, 5(2): 189-198.
  • 6Daniel Y Abramoviteh, Sean B Andersson, Lucy Y Pao, Georg Schitter. A Tutorial on the Mechanisms, Dynamics, and control of Atomic Force Microscopes [C]// Proceedings of 2007 American Control Conference, New York City, USA. USA: IEEE, 2007: 3488-3502.
  • 7M Gauthier, R Perez, T Arai, M Tomitori, M. Tsukada. Interplay between nonlinearity, scan speed, damping, and electronics in frequency modulation Atomic-Force Microscopy [J]. Physical Review Letters (S0031-9007), 2002, 89(14): 146104.
  • 8Jerome Polesel-Maris, Sebastien Gauthier. A virtual dynamic atomic force microscope for image calculations [J]. Journal of Applied physics (S0021-8979), 2005, 97(4): 044902.
  • 9Xianwei Zhou, Yongchun Fang. A Virtual Tapping-Mode Atomic Force Microscope [C]// Proceedings of 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, 2006. USA: IEEE, 2006: 501-504.
  • 10J Israelachvili. Intermolecular and Surface Forces [M]. San Diego, China: Academic Press, 1992.

共引文献30

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部