摘要
Betulin(BE)has exceedingly become a potential natural product,providing multiple pharmacological and biological activi-ties,including anti-cancer,anti-viral,and anti-inflammatory benefits.Previous research indicated that the solvatomorphism of BE can easily occur through crystallization with different organic solvents.This property of BE can directly affect its extraction,isolation,and preparation process.In this study,a system of thermogravimetry(TG)-differential thermal analysis(DTA)coupled with mass spectrometry(MS)with electron ionization(EI)and photoionization(PI)capability,equipped with the skimmer-type interface(i.e.,skimmer-type interfaced TG-DTA-EI/PI-MS system),as a real-time and onsite analysis technique,was employed.Then,four solvatomorphs of BE,namely,with pyridine and water(A),sec-butanol(B),n,n-dimethylformamide(DMF)(C),and isopropanol(V),were analyzed for the first time.Finally,five kinds of the main volatile gaseous species,including H2O,pyridine,sec-butanol,DMF,and isopropanol,were identified clearly.Furthermore,the multi-step desolvation processes of the four solvatomorphs of BE were revealed by this system for the first time.This system showed great potential for the rapid and accurate analysis of various solvatomorphs of natural products.
基金
supported by National Key R&D Program of China(Grant No.2016YFC1000900)
National Science and Technology Major Project of China(Grant Nos.2017ZX09101001003,2018ZX09711001-010)
National Natural Science Foundation of China(NSFC)(Grant No.81703473)
CAMS Innovation Fund for Medical Sciences(Grant No.2017-I2M-3-010).