期刊文献+

3D打印建筑砂浆的工作性和可建造性及其影响因素 被引量:1

Workability and buildability of 3D printing mortar and its influencing factors
下载PDF
导出
摘要 研究了聚合物、矿物掺和料、骨料等对3D打印建筑砂浆的可挤出性、出料连续性、堆积性能以及层间衔接性能的影响。结果表明:不掺聚合物或乳胶粉(FX)、塑化剂(KHC)单掺及两者复掺时3D打印建筑砂浆的挤出性较差,掺加保塑剂(HMC)有利于打印砂浆的挤出,HMC与FX复掺可进一步改善打印砂浆的挤出性能。掺加复合矿物掺和料,采用合适的骨料,且HMC、FX和KHC同时掺加时,打印砂浆具有良好的挤出性能、出料连续性、较小的塑性变形,实现了较大的有效堆积高度。采用优化配比打印的建筑构件,层间衔接良好,无宏观缺陷。打印砂浆的工作性、可建造性与其流动度或容重没有必然关系,传统的砂浆流动性无法有效表征3D打印砂浆的工作性。 The effects of polymer,mineral admixture and aggregate on extrudability,discharging continuity,stacking property and interlayer interface of 3D printing mortar are studied.The test results show that the extrusion property of 3D printing mortar is poor when polymer is not added,or FX and KHC are single-doped or doped together.HMC and the mixing of HMC and FX are benefit to the extrudability of printing mortar.When the composite mineral admixture is mixed with suitable aggregate,and HMC,FX and KHC are mixed at the same time,the printing mortar has good extrusion performance,discharge continuity,small plastic deformation,and can achieve a large effective stacking height.Printing the building component by using the optimized proportion,the interface between the layers is good,and there is no macroscopic defect.There is no definite relationship between the workability,buildability and the fluidity or bulk density of the printing mortar.The traditional mortar fluidity cannot effectively characterize the workability of the 3D printing mortar.
作者 刘巧玲 赵宗志 杨钱荣 LIU Qiaoling;ZHAO Zongzhi;YANG Qianrong(School of Materials Science and Engineering,Tongji University,Shanghai 201804,China)
出处 《中国建材科技》 CAS 2021年第3期84-88,共5页 China Building Materials Science & Technology
关键词 3D打印建筑砂浆 工作性 可建造性 影响因素 3D printing mortar workability buildability influence factors
  • 相关文献

参考文献6

二级参考文献59

  • 1国家质量技术监督局.GB/T17671-1999水泥胶砂强度检验方法(ISO法)[S].北京:中国建筑工业出版社,1999.
  • 2黄利频,袁玲.聚合物干粉改性水泥砂浆性能及应用研究[J].武汉理工大学学报,2007,29(10):15-19. 被引量:26
  • 3Evans M A, Ian Campbell R. A comparative evaluation of industrial design models produced using rapid prototyping and workshop-based fabrication teehniques[J].Rapid Prototyping Journal,2003,9(5):344-351.
  • 4Sambu S, Chen Y, Rosen D W. Geometric tailoring: a design for manufacturing method for rapid prototyping and rapid tooling[C]. ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers,2002:149-161.
  • 5Buswell R A,Soar R C,Gibb A G F,et al. Freeform construction:mega-scale rapid manufacturing for construction[J]. Automation in Construction,2007,16(2):224-231.
  • 6Pegna J.Exploratory investigation of solid freeform construction[J]. Automation in Construction, 1997,5(5):427-437.
  • 7Lim S,Buswell R A,Le T T, et al. Developments in construction- scale additive manufacturing processes[J].Automation in Construction,2012,21:262-268.
  • 8Khoshnevis B. Automated construction by contour crafting- related robotics and information technologies[J].Automation in Construction,2004,13 (1):5-19.
  • 9Zhang J,Khoshnevis B.Optimal machine operation planning for construction by Contour Crafting[J].Automation in Construction,2013,29:50-67.
  • 10Hwang D,Khoshnevis B.Concrete wall fabrication by contourcrafting[C],21st International Symposium on Automation and Robotics in Construction (ISARC2004),Jeju, South Korea,2004.

共引文献58

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部