摘要
针对传统滤波算法对高噪声密度椒盐噪声污染的图像去噪效果不佳的劣势,采用遗传算法优化BP神经网络后对图像中的椒盐噪声进行自适应开关加权滤波处理。与几种相关方法的对比实验表明,本方法神经网络泛化性能强、椒盐噪声检测的准确率高、经过滤波处理后图像还原度高、图像细节信息保护效果较理想。
For the poor performance of conventional filtering algorithms in removing salt and pepper noise from digital images under high noise density,an adaptive switching weighted mean filter algorithm based on BP neural network optimized by genetic algorithm(GA)is proposed to detect and remove salt and pepper noise from images.The contrastive experiments of several related methods show that the proposed algorithm significantly outperforms the others and efficiently removes salt and pepper noise from digital images without distorting image details and texture.
作者
窦艳艳
杜警
DOU Yan-yan;DU Jing(Nanjing Technical Vocational College,Nanjing,Jiangsu,China 210019;CRRC Nanjing Puzhen Co.,Ltd.,Nanjing,Jiangsu,China 210031)
出处
《湖南邮电职业技术学院学报》
2021年第2期40-43,共4页
Journal of Hunan Post and Telecommunication College
基金
第四期江苏省职业教育教学改革研究课题“互联网+时代综合课程数字化教学资源开发与实践--以《工业机器人技术应用》课程为例”(课题编号:ZZZ6)。
关键词
遗传算法
BP神经网络
椒盐噪声检测
自适应开关加权滤波
genetic algorithm
BP neural network
salt and pepper noise detection
adaptive switching weighted filter