期刊文献+

Sampled-Data Stabilization of a Class of Stochastic Nonlinear Markov Switching System with Indistinguishable Modes Based on the Approximate Discrete-Time Models

原文传递
导出
摘要 This paper investigates the stabilization issue for a class of sampled-data nonlinear Markov switching system with indistinguishable modes.In order to handle indistinguishable modes,the authors reconstruct the original mode space by mode clustering method,forming a new merged Markov switching system.By specifying the difference between the Euler-Maruyama(EM)approximate discrete-time model of the merged system and the exact discrete-time model of the original Markov switching system,the authors prove that the sampled-data controller,designed for the merged system based on its EM approximation,can exponentially stabilize the original system in mean square sense.Finally,a numerical example is given to illustrate the effectiveness of the method.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第3期843-859,共17页 系统科学与复杂性学报(英文版)
基金 supported by the National Key Research and Development Program of China under Grant Nos.2018AAA0100800 and 2018YFE0106800 the National Natural Science Foundation of China under Grant Nos.61725304 and 61673361 the Science and Technology Major Project of Anhui Province under Grant No.912198698036。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部