期刊文献+

核极限学习机的在线状态预测方法综述 被引量:1

Survey of Kernel Extreme Learning Machine Methods for Online Prediction
下载PDF
导出
摘要 对非平稳混沌时间序列进行在线预测是当前科学和工程领域中的一个重要研究方向,核极限学习机(kernel extreme learning machine,KELM)为其提供了一种有效的数学模型。由于学习速度快、泛化性能好,在线贯序核极限学习机(online sequential KELM,OSKELM)在状态预测中得到了广泛的研究与扩展。首先,描述了问题并介绍了OSKELM的数学模型;然后,以混沌时间序列为应用背景,对基于OSKELM的各种改进方法进行了分类综述,包括基于数据增量的OSKELM、基于稀疏字典的OSKELM、基于参数寻优和遗忘因子的OSKELM以及其他方法,并对算法性能进行比较和分析;最后总结并讨论了该方法的未来研究方向。 The online prediction of nonstationary chaotic time series is an important research direction in the field of science and engineering,for which kernel extreme learning machine(KELM)provides an effective mathematical model.Due to its fast learning speed and good generalization performance,online sequential KELM(OSKELM)has been extensively studied and extended in state prediction.The problem was described and mathematical model of OSKELM were introduced.Then,with chaotic time series as the application background,various improved OSKELM-based methods were classified and summarized,including OSKELM based on incremental learning method,OSKELM based on sparse dictionary,OSKELM based on parameter optimization,OSKELM based on forgetting factor and other methods.Afterwards,the performance of the algorithm was compared and analyzed.The thesis was summarized and the future research direction of this method was discussed.
作者 戴金玲 吴明辉 刘星 李睿峰 DAI Jinling;WU Minghui;LIU Xing;LI Ruifeng(Naval Aviation University,Yantai 264001,China;Hangzhou Institute of Applied Acoustics,Hangzhou 310000,China;The No.92932 nd Troop of PLA,Zhanjiang 524000,China)
出处 《兵器装备工程学报》 CSCD 北大核心 2021年第6期12-19,共8页 Journal of Ordnance Equipment Engineering
基金 军队预研基金项目资助项目(3020202090302)。
关键词 核极限学习机 状态预测 遗忘因子 时变正则化因子 稀疏字典 kernel extreme learning machine state prediction forgetting factor time-varying regularization factor sparse dictionary
  • 相关文献

参考文献13

二级参考文献47

  • 1乔俊飞,韩红桂.前馈神经网络分析与设计[M].北京:科学出版社,2013:10-11,30-37.
  • 2ManZ H, LeeK, Wang D H, etal. Robust single- hidden layer feedforward network-based pattern clas- sifier [J]. IEEE Transactions on Neural Networks and Learning Systems,2012,23(12) :1974-1986.
  • 3Liang N Y, Huang G B, Saratchandran P, et al. A fast and accurate online sequential learning algorithm for feedforward networks [J]. IEEE Transactions on Neural Networks,2006,17(6) : 1411-1423.
  • 4Haykin S. Neural networks and learning machines [M]. 3rd ed. New Jersey:Pearson, Prentice-Hall, 2009.
  • 5Kumar S. Neural networks [M]. New York.. McGraw-Hill Companies, Inc,2006.
  • 6Yao X. Evolving artificial neural networks [J]. Pro- ceedings of the IEEE, 1999,87 (9): 1423-1447.
  • 7Zhang G, Neural networks for classification: a survey [J]. IEEE Transactions on Systems, Man and Cyber- netics:Part C,2000(30) :451-462.
  • 8Hertz J, Krogh A, Palmer R G. Introduction to the theory of neural computations [M]. Boston: Addi- son-Wesley Publishing Company, 1991.
  • 9Huang G B, Chen L, Slew C K. Universal approxi- mation using incremental constructive feedforward networks with random hidden nodes [J ]. IEEE Transactions on Neural Networks, 2006, 17 (4) : 879- 892.
  • 10Igelnik B, Pao Y H. Stochastic choice of basis func- tions in adaptive function approximation and the func- tional-link net [J]. IEEE Transactions on Neural Net- works,1995,6 (6) :1320-1329.

共引文献187

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部