摘要
航空发动机故障中的深喘严重破坏发动机运行稳定乃至飞机安全。针对该问题,分析了表征喘振故障关键参量的异常变化特征,基于航空发动机运行过程气动热力机理所构建的发动机整体仿真模型模拟的表征发生喘振故障的关键参量变化情况,利用长短记忆神经网络模型进行数据变化趋势预测,通过与其他类型的不同网络算法预报结果的比较,验证了LSTM模型用于喘振故障关键参量预测的有效性。
Surge fault surge will seriously damage the stability of the engine operation and even the safety of the aircraft,resulting in serious consequences.The abnormal variation characteristics of key parameters characterizing surge fault were analyzed.Based on the aerothermodynamic mechanism of aeroengine in operation,the whole simulation model of aeroengine was established,and the change of key parameters of surge fault was simulated.The LSTM neural network model was used to predict the trend of data changes.By comparing with the prediction results of other different network algorithms,the validity of LSTM model in predicting the critical parameters of surge fault was verified.
作者
葛怡
陈文卓
胡绍林
潘鹏飞
GE Yi;CHEN Wenzhuo;HU Shaolin;PAN Pengfei(School of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710048,China;School of Artificial Intelligence,Henan University,Kaifeng 475004,China;Engine Institute,China Flight Test and Research Institute,Maoming 525000,China)
出处
《兵器装备工程学报》
CSCD
北大核心
2021年第6期194-200,共7页
Journal of Ordnance Equipment Engineering
基金
国家自然科学基金项目(61973094)
茂名市科技计划项目(2020S004)。