期刊文献+

An integrated flexible and reusable graphene field effect transistor nanosensor for monitoring glucose

原文传递
导出
摘要 Diabetes is a chronic metabolic disease that has effect on blood sugar level and affects millions of people.We present an integrated flexible and reusable graphene-based field effect transistor(GFET)nanosensor for the detection of glucose using pyrene-1-boronic acid(PBA)as the receptor.The nanosensor fabricated on the polyimide performs GFET-based rapid transduction of the glucose-PBA binding,thereby potentially allowing the detection of glucose that are sampled reliably from human bodily fluids(e.g.,sweat)in wearable sensing applications.Due to the reversible binding interaction between PBA and glucose,reusability of our nanosensor can be realized by exposing graphene surface to acidic solution.In characterizing the stability and reusability of the nanosensor for wearable applications,we investigated the effects of substrate bending,multiple reuse and long-time storage on the equilibrium dissociation constant between the PBA and glucose.Results show that bending,multiple reuse(over 10 times)and long-time storage has negligible effect on the sensing performance.The detection of glucose with a limit of detection(LOD)of 0.15 μM and a dynamic range of 0.05-100 μM,which covers the reference scope of physical examination or screening of diabetes.Hence,our flexible GFET nanosensor is promising for wearable and reusable biosensing applications.
出处 《Journal of Materiomics》 SCIE EI 2020年第2期308-314,共7页 无机材料学学报(英文)
基金 supported by fundings from the National Natural Science Foundation of China(Grant Nos.51505108) the Heilongjiang Postdoctoral Science Foundation(Grant Nos.LBHZ19221) the China Postdoctoral Science Foundation(Grant Nos.2019M661270) Key Laboratory of Micro-systems and Microstructures Manufacturing(Harbin Institute of Technology),Ministry of Education(Grant Nos.2019KM003).
  • 相关文献

参考文献1

二级参考文献38

  • 1R. Prehn, M. Cortina-Puig, F.X.M. Pascual, F.J.D. Campo, L. Abad, J. Electrochem. Soc. 159, F134 (2012).
  • 2F. Meng, W. Shi, Y. Sun, X. Zhu, G. Wu, C. Ruan, X. Liu, D. Ge, Biosens. Bioelectron. 4, 141 (2013).
  • 3B.D. Malhotra, A. Chaubey, S.P. Singh, Anal. Chim. Acta 578, 59 (2006).
  • 4J. Wang, Chem. Rev. 108, 814 (2008).
  • 5P. Sejin, S.Y. Lee, H. Boo, H.M. Kim, K.B. Kim, H.C. Kim, Y.J. Song, T.D. Chung, Chem. Mater. 19, 3373 (2007).
  • 6Y. Sun, H. Buck, T.E. Mallouk, Anal. Chem. 73, 1599 (2001).
  • 7H. Zhao, H. Ju, Anal. Biochem. 350, 138 (2006).
  • 8A. Merkoc, M. Pumera, X. Lopis, B. Perez, M. del Valle, S. Alegret, Trends Anal. Chem. 24, 9 (2005).
  • 9V.G. Gavalasa, S.A. Lawa, J.C. Balla, R. Andrewsb, L.G. Bachasa, Anal, Biochem. 329, 247 (2004).
  • 10Y. Lin, X. Cui, X. Ye, Electrochem. Commun. 7, 267 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部