期刊文献+

Developing controllable hypermutable Clostridium cells through manipulating its methyl-directed mismatch repair system 被引量:4

原文传递
导出
摘要 Development of controllable hypermutable cells can greatly benefit understanding and harnessing microbial evolution.However,there have not been any similar sys-tems developed for Clostridium,an important bacterial genus.Here we report a novel two-step strategy for de-veloping controllable hypermutable cells of Clostridium acetobutylicum,an important and representative indus-trial strain.Firstly,the mutS/L operon essential for methyl-directed mismatch repair(MMR)activity was inactivated from the genome of C.acetobutylicum to generate hy-permutable cells with over 250-fold increased mutation rates.Secondly,a proofreading control system carrying an inducibly expressed mutS/L operon was constructed.The hypermutable cells and the proofreading control system were integrated to form a controllable hypermut-able system SMBMutC,of which the mutation rates can be regulated by the concentration of anhydrotetracycline(aTc).Duplication of the miniPthl-tetR module of the proof-reading control system further signifi cantly expanded the regulatory space of the mutation rates,demonstrating hypermutable Clostridium cells with controllable mutation rates are generated.The developed C.acetobutylicum strain SMBMutC2 showed higher survival capacities than the control strain facing butanol-stress,indicating greatly increased evolvability and adaptability of the controllable hypermutable cells under environmental challenges.
出处 《Protein & Cell》 SCIE CSCD 2013年第11期854-862,共9页 蛋白质与细胞(英文版)
基金 the National Natural Science Foundation of China(Grant No.31270107) the National Basic Research Program of China(973 Program)(No.2011CBA00800) the National High Technology Research and Development Program(863 Program)(No.2011AA02A208) the Knowledge Innovation Program of the Chinese Acad-emy of Sciences(No.KSCX2-EW-Q-14).
  • 相关文献

参考文献1

二级参考文献10

  • 1Green EM, Boynton ZL, Harris LM, et al. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 1996; 142 ( Pt 8):2079- 2086.
  • 2Nair RV, Green EM, Watson DE, Bennett GN, Papoutsakis ET. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacterial 1999: 181:319-330
  • 3Nakotte S, Schaffer S, Bohringer M, Durre E Electroporation of, plasmid isolation from and plasmid conservation in Clostridium acetobutylicum DSM 792. Appl Microbiol Biotechnol 1998; 50:564-567.
  • 4Harris LM, Welker NE, Papoutsakis ET. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacterial 2002; 184:3586-3597.
  • 5Chen Y, McClane BA, Fisher D J, Rood JI, Gupta P. Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group Ⅱ intron. Appl Environ Microbial 2005; 71:7542-7547.
  • 6Lee SY, Bennett GN, Papoutsakis ET. Construction of Escherichia-coli Clostridium-acetobutylicum shuttle vectors and transformation of Clostridium-acetobutylicum strains. B iotechnol Lett 1992; 14:427-432.
  • 7Harris LM, Desai RP, Welker NE, Papoutsakis ET. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 2000; 67:1-11.
  • 8Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 2001; 27:322-328.
  • 9Lee SY, Mermelstein LD, Papoutsakis ET. Determination of plasmid copy number and stability in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Lett 1993; 108:319-323.
  • 10Heap JT, Pennington O J, Cartman ST, Carter GP, Minton NP. The ClosTron: A universal gene knock-out system for the genus Clostridium. J Microbiol Methods 2007; 70:452-464.

共引文献24

同被引文献13

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部