期刊文献+

Quadrature Based Optimal Iterative Methods with Applications in High-Precision Computing

原文传递
导出
摘要 We present a simple yet effective and applicable scheme,based on quadrature,for constructing optimal iterative methods.According to the,still unproved,Kung-Traub conjecture an optimal iterative method based on n+1 evaluations could achieve a maximum convergence order of 2n.Through quadrature,we develop optimal iterative methods of orders four and eight.The scheme can further be applied to develop iterative methods of even higher orders.Computational results demonstrate that the developed methods are efficient as compared with many well known methods.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2012年第4期592-601,共10页 高等学校计算数学学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部