期刊文献+

Use of Shifted Laplacian Operators for Solving Indefinite Helmholtz Equations

原文传递
导出
摘要 A shifted Laplacian operator is obtained from the Helmholtz operator by adding a complex damping.It serves as a basic tool in the most successful multigrid approach for solving highly indefinite Helmholtz equations—a Shifted Laplacian preconditioner for Krylov-type methods.Such preconditioning significantly acceler-ates Krylov iterations,much more so than the multigrid based on original Helmholtz equations.In this paper,we compare approximation and relaxation properties of the Helmholtz operator with and without the complex shift,and,based on our ob-servations,propose a new hybrid approach that combines the two.Our analytical conclusions are supported by two-dimensional numerical results.
作者 Ira Livshits
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2015年第1期136-148,共13页 高等学校计算数学学报(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部