期刊文献+

Controllable preparation and microwave absorption properties of shape anisotropic Fe_(3)O_(4) nanobelts 被引量:3

原文传递
导出
摘要 To substantially prevent electromagnetic threatens,microwave absorbing materials(MAMs)are required to eliminate surplus electromagnetic waves.As a typical MAM,Fe_(3)O_(4) particles with complex permittivity and permeability have been widely applied due to the coexistence of magnetic loss and dielectric loss.However,the necessary high mass fraction significantly limited its applications,thus Fe_(3)O_(4) nanostructures have been extensively investigated to overcome this problem.In this work,uniform Fe_(3)O_(4) nanobelts were prepared by electrospinning and two-step thermal treatment.By controlling the composition and viscosity of the electrospinning precursor solution,Fe_(3)O_(4) nanobelts with tunable lateral sizes(200 nme1 mm)were obtained.The samples with low content(only 16.7 wt%)Fe_(3)O_(4) exhibited wide maximum effective absorbing bandwidths(EAB)over 3 GHz,and Fe_(3)O_(4) nanobelts with smaller lateral sizes showed a maximum EAB of 4.93 GHz.Meanwhile,Fe_(3)O_(4) nanobelts with smaller lateral sizes presented superior reflection loss properties,the lowest reflection loss reached-53.93 dB at 10.10 GHz,while the maximum EAB was up to 2.98 GHz.The excellent microwave reflection loss of Fe_(3)O_(4) nanobelts was contributed to the enhanced synergistic effect of magnetic loss,dielectric loss,and impedance matching,originated from the hierarchically cross-linked networks and shape anisotropies.This study could broaden the practical applications of magnetic absorbers,and provided an approach for the development of shape anisotropic magnetic materials.
出处 《Journal of Materiomics》 SCIE EI 2021年第5期957-966,共10页 无机材料学学报(英文)
  • 相关文献

参考文献1

二级参考文献2

共引文献25

同被引文献22

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部