期刊文献+

daptive Hybridized Interior Penalty Discontinuous Galerkin Methods for H(curl)-Elliptic Problems 被引量:1

原文传递
导出
摘要 We develop and analyze an adaptive hybridized Interior Penalty Discontinuous Galerkin(IPDG-H)method for H(curl)-elliptic boundary value problems in 2D or 3D arising from a semi-discretization of the eddy currents equations.The method can be derived from a mixed formulation of the given boundary value problem and involves a Lagrange multiplier that is an approximation of the tangential traces of the primal variable on the interfaces of the underlying triangulation of the computational domain.It is shown that the IPDG-H technique can be equivalently formulated and thus implemented as a mortar method.The mesh adaptation is based on a residual-type a posteriori error estimator consisting of element and face residuals.Within a unified framework for adaptive finite element methods,we prove the reliability of the estimator up to a consistency error.The performance of the adaptive symmetric IPDG-H method is documented by numerical results for representative test examples in 2D.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2011年第1期13-37,共25页 高等学校计算数学学报(英文版)
基金 The work of the first author has been supported by the German Na-tional Science Foundation DFG within the Research Center MATHEON and by the WCU program through KOSEF(R31-2008-000-10049-0).The other authors acknowledge sup-port by the NSF grant DMS-0810176.1
  • 相关文献

参考文献1

二级参考文献31

  • 1A. Buffa and Ph. Ciarlet Jr., On traces for functional spaces realted to Maxwell's Equations. Part I: An integration by parts formula in Lipschitz polyhedra, Math. Method. Appl. Sci., 24 (2001), 9-30.
  • 2A. Buffa and Ph. Ciarlet Jr., On traces for functional spaces realted to Maxwell's equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications, Math. Method. Appl. Sci., 24 (2001), 31-48.
  • 3A. Buffa, M. Costabel, and D. Sheen, On traces for H(curl,Ω) in Lipschitz domains, J. Math. Anal. Appl., 276 (2002), 845-867.
  • 4C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive edge finite element method for the 2d eddy current equations, J. Numer. Math., 13 (2005), 19-32.
  • 5C. Carstensen and R.H.W. Hoppe, Error reduction and convergence for an adaptive mixed finite element method, Math. Comput., 75 (2006), 1033-1042.
  • 6C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive nonconforming finite element method, Numer. Math., 103 (2006), 251-266.
  • 7W. Dorfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33 (1996), 1106-1124.
  • 8K. Eriksson, D. Estep, P. Hansbo, and C. Johnson, Computational Differential Equations, Cambridge University Press, Cambridge, 1995.
  • 9R. Hiptmair, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal., 36 (1998), 204- 225.
  • 10R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 11 (2002), 237- 339.

共引文献4

同被引文献7

  • 1BOSSAVIT A. Computational electromagnetism: Variational formulation, complementarity, edge elments [ M ]. San Diego, CA:Academic Press, 1998.
  • 2HIPTMAIR R. Multigrid method for Maxwell's equations [J]. SIAM Journal on Numerical Analysis, 1999, 36 ( 1 ) :204 - 225.
  • 3CARSTENSEN C, HOPPE R. Unified framework for an a posteriori error analysis of non - standard finite element approximations of H ( curl ) - elliptic problems [ C ]// IEEE International Conference on Electromagaaetics in Ad- vanced Applications ( ICEAA'09 ). Torino, Italy, 2009 : 754 - 755.
  • 4HOUSTON P, PERUGIA I, SCHOTZAU D. An a poste- riori error indicator for discontinuous Galerkin discretiza- tions of H (curl) - elliptic partial differential equations [ J ]. IMA J Numer Anal, 2007, 27 ( 1 ) : 122 - 150.
  • 5HOUSTON P, PERUGIA I,SCHENEEBELI A, et al. Interior penalty method for the indefinite time - harmonic Maxwell equations [ J ]. Numerische Mathematik, 2005, 100(3) :485 -518.
  • 6PERUGIA I, SCHOTZAU D, MONK P. Stabilized interior penalty methods for the time - harmonic Maxwell equations [J]. Computer Methods in Applied Mechanics and Engineering, 2002,191 (41 - 42 ) : 4675 - 4697.
  • 7SCHOBERL J. A posteriori error estimates for Maxwell equations [ J ]. Mathematics of Computation, 2008, 77 (262) :633 -649.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部