期刊文献+

Fluid Flow Estimation with Multiscale Ensemble Filters Based on Motion Measurements Under Location Uncertainty 被引量:1

原文传递
导出
摘要 This paper proposes a novel multi-scale fluid flow data assimilation approach,which integrates and complements the advantages of a Bayesian sequential assimilationtechnique, the Weighted Ensemble Kalman filter (WEnKF) [27]. The data assimilation proposed in this work incorporates measurement brought by an efficient multiscalestochastic formulation of the well-known Lucas-Kanade (LK) estimator. This estimatorhas the great advantage to provide uncertainties associated to the motion measurements at different scales. The proposed assimilation scheme benefits from this multiscale uncertainty information and enables to enforce a physically plausible dynamicalconsistency of the estimated motion fields along the image sequence. Experimentalevaluations are presented on synthetic and real fluid flow sequences.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2013年第1期21-46,共26页 高等学校计算数学学报(英文版)
基金 The authors acknowledge the support of the French Agence Nationale de la Recherche(ANR),under grant PREVASSEMBLE(ANR-08-COSI-012).
  • 相关文献

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部