期刊文献+

A Fast Augmented Lagrangian Method for Euler’s Elastica Models 被引量:2

原文传递
导出
摘要 In this paper,a fast algorithm for Euler’s elastica functional is proposed,in which the Euler’s elastica functional is reformulated as a constrained minimization problem.Combining the augmented Lagrangian method and operator splitting techniques,the resulting saddle-point problem is solved by a serial of subproblems.To tackle the nonlinear constraints arising in the model,a novel fixed-point-based approach is proposed so that all the subproblems either is a linear problem or has a closed-form solution.We show the good performance of our approach in terms of speed and reliability using numerous numerical examples on synthetic,real-world and medical images for image denoising,image inpainting and image zooming problems.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2013年第1期47-71,共25页 高等学校计算数学学报(英文版)
  • 相关文献

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部