摘要
In this paper,a fast algorithm for Euler’s elastica functional is proposed,in which the Euler’s elastica functional is reformulated as a constrained minimization problem.Combining the augmented Lagrangian method and operator splitting techniques,the resulting saddle-point problem is solved by a serial of subproblems.To tackle the nonlinear constraints arising in the model,a novel fixed-point-based approach is proposed so that all the subproblems either is a linear problem or has a closed-form solution.We show the good performance of our approach in terms of speed and reliability using numerous numerical examples on synthetic,real-world and medical images for image denoising,image inpainting and image zooming problems.