摘要
该文介绍了DGA域名的研究背景和价值,DGA域名的特点、分类和基本定义。然后介绍了人工智能中几种流行的智能算法,例如XGBoost、朴素贝叶斯、多层感知器和循环神经网络。接着介绍了几种特征提取的方法,包括N-Gram模型、统计域名特征模型和字符序列模型。最后对特征提取和相关算法进行实验,并对结果进行对比分析,获取较优的特征提取和算法组合。
This paper introduces the research background and value of DGA domain name,the characteristics,classification and basic definition of DGA domain name.Then it introduces several popular intelligent algorithms in artificial intelligence,such as xgboost,naive Bayes,multilayer perceptron and cyclic neural network.Then several feature extraction methods are introduced,including N-gram model,statistical domain name feature model and character sequence model.Finally,the experiments of feature extraction and related algorithms are carried out,and the results are compared and analyzed to obtain better feature extraction and algorithm combination.
作者
罗海波
陈星池
董建虎
LUO Hai-bo;CHEN Xing-chi;DONG Jian-hu(School of Computer,Guangdong Neusoft Institute,Foshan Guangdong 528225,China)
出处
《新一代信息技术》
2021年第8期36-42,共7页
New Generation of Information Technology
基金
2016年广东省教育厅重点培育学科建设项目(项目编号:006940116/2016-01600)。
关键词
DGA域名
多层感知机
深度学习
检测技术
DGA domain name
Multi-layer perceptron
Deep learning
Detection technology