期刊文献+

素数无穷性质证明的分层教学设计

Hierarchical Teaching Design of Proving the Infinitude of Primes
下载PDF
导出
摘要 素数无穷性质的证明有多种,其证明过程和难度各异。素数作为数论和密码学中必不可少的教学内容在信息安全等领域有相当重要而广泛的运用。让更多人理解和掌握素数无穷性质的证明,是提高他们对素数认识的重要教学环节。本文旨在提出多种针对不同层次学生的分层次素数无穷性质证明的教学设计,由浅入深,用不同的教育方式使更多人理解掌握素数的无穷性质证明及其应用。 Numerous proofs that there are infinitely many primes have been devised,and the proofs vary the proving process as well as the difficulty.As an essential teaching content in the courses of number theory and cryptography,the prime has important and wide applications in fields such as information security.Helping more student understand and master the proof of the infinitude of primes is an important teaching link to improve their comprehension to the prime numbers.This paper presents several hierarchical teaching designs of proving the infinitude of primes for different levels of students from the easy to the complicated,and various education methods are utilized to promote understanding and mastering of die proofs of infinitude of primes and relevant applications.
作者 张艳硕 李泽昊 戴君熹 ZHANG Yanshuo;LI Zehao;DAI Junxi(Beijing Electronic Science and Technology Institute,Beijing 100070,P.R.China)
出处 《北京电子科技学院学报》 2021年第2期87-95,共9页 Journal of Beijing Electronic Science And Technology Institute
基金 2020年教育部新工科项目“新工科背景下数学课程群的教学改革与实践” 教育部信息安全一流专业建设点项目资助。
关键词 素数无穷性质 分层 教学设计 the infinitude of primes hierarchical teaching design
  • 相关文献

参考文献6

二级参考文献13

  • 1Aldaz J M, Bravo A. Euclid's argument on the infinitude of primes [J]. Amer. Math. Monthly, 2003,110(2):141- 142.
  • 2Figueroa-Centeno R M, Ichishima R, Muntaner-Batle F A. Bertrand's postulate and magical product labellings [J]. Bull. ICA, 2000, 30:53-65.
  • 3Hardy G H, Wright E M. An Introduction to the Theory of Numbers [M]. Boston:Academic Press Inc, 1979.
  • 4Cohen H. A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics 84 [M]. New York:Springer-Verlag, 1990.
  • 5闵嗣鹤 严士健.初等数论[M].北京:高等教育出版社,1998..
  • 6卢开澄.计算机密码学[M].北京:清华大学出版社,2003.
  • 7W Diffie,M Hellman.New Directions in Cryptography[J].IEEE Trans on Information Theory,1976,22(6):644-654.
  • 8Bruce Schneier.吴世忠译.应用密码学:协议、算法与C源程序[M].北京:机械工业出版社,2000.
  • 9William Stallings.Cryptography and Network Security:Principles and Practice.Second Edition[M].北京:清华大学出版社,2002.
  • 10Birkhoff G D and Vandiver H S. On the integral divisors of a - b [J]. Ann. of Math. ,1904,5(2) :173- 180.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部