期刊文献+

Microorganisms from deep-sea hydrothermal vents 被引量:1

原文传递
导出
摘要 With a rich variety of chemical energy sources and steep physical and chemical gradients,hydrothermal vent systems offer a range of habitats to support microbial life.Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic,heterotrophic,or mixotrophic life with versatile metabolic strategies.Biogeochemical processes are mediated by microorganisms,and notably,processes involving or coupling the carbon,sulfur,hydrogen,nitrogen,and metal cycles in these unique ecosystems.Here,we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents.According to the physiology of the targeted taxa and their needs inferred from meta-omics data,the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature,pH,hydrostatic pressure,electron donors and acceptors,carbon sources,nitrogen sources,and growth factors.The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended.
出处 《Marine Life Science & Technology》 2021年第2期204-230,共27页 海洋生命科学与技术(英文)
基金 This work was supported by the National Key R&D Program of China(No.2018YFC0310701) the Chinese National Natural Science Foundation(No.91951201) the Scientific Research Foundation of Third Institute of Oceanography,MNR(No.2017003) the Sino-French LIA/IRP 1211 MicrobSea.
  • 相关文献

参考文献1

二级参考文献68

  • 1Agogue H, Brink M, Dinasquet J, et al. 2008. Major gradients in puta- tively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature, 456(7223): 788-791.
  • 2Arakawa S, Sato T, Yoshida Y, et al. 2006. Comparison of the microbial diversity in cold-seep sediments from different depths in the Nankai Trough. J Gen Appl Microbiol, 52 (1): 47-54.
  • 3Baker G C, Smith J J, Cowan D A. 2003. Review and re-analysis of do-main-specific 16S primers. J Microbiol Methods, 55(3): 541-555.
  • 4Beal E J, House C H, OrphanV J. 2009. Manganese- and iron-dependent marine methane oxidation. Science, 325(5937): 184-187.
  • 5Blazejak A, Erseus C, Amann R, et al. 2005. Coexistence of bacterial sulfide oxidizers, sulfate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru margin. Appl Environ Micro- biol, 71(3): 1553-1561.
  • 6Brandt A, Gooday A J, Brandao S N, et al. 2007. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature, 447 (7142): 307-311.
  • 7Brocbier-Armanet C, Boussau B, Gribaldo S, et al. 2008. Mesophil- ic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol, 6(3): 245-252.
  • 8Burns J A, Zehr I P, Capone D G. 2002. Nitrogen-fixing phylotypes of Chesapeake Bay and Neuse River estuary sediments. Microb Ecol, 44(4): 336-343.
  • 9Chien Y T, Zinder S H. 1994. Cloning, DNA sequencing, and character- ization of a nifD-homologous gene from the archaeon Methano- sarcina barkeri 227 which resembles nifD 1 from the eubacte- rium Clostridium pasteurianum. J Bacteriol, 176:6590-6598.
  • 10Crump B C, Peranteau C, Beckingham B, et al. 2007. Respiratory suc- cession and community succession of bacterioplankton in sea- sonally anoxic estuarine waters. Appl Environ Microbiol, 73(21): 6802-6810.

共引文献2

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部