期刊文献+

滚动轴承状态监测与早期故障诊断系统研究与设计 被引量:4

Study and Design for Rolling Bearing Condition Monitoring and Early Fault Diagnosis System
下载PDF
导出
摘要 针对滚动轴承状态监测与早期故障诊断困难的问题,从滚动轴承的结构组成和工作机理出发,基于LabVIEW设计了具有模块化结构的在线监测-离线诊断监测系统。首先在线监测振动信号的时域指标,其次基于经验模态分解(Empiricalmodedecomposition,EMD)和包络谱分析确定振动信号有效分量并从中提取故障特征,离线诊断出滚动轴承的故障类型。最后,通过实验验证系统的可行性。实验结果表明该监测系统能够快速便捷地获取滚动轴承状态参数,同时准确可靠地进行故障识别,能够满足滚动轴承状态可视化监测和早期故障识别的要求。 Aiming at the difficult of condition monitoring and fault diagnosis in the early stage of rolling bearing,starting from the structure and working mechanism of rolling bearing,an online monitoring offline diagnosis monitoring system with modular structure is designed based on LabVIEW.Firstly,the time-domainindexes of vibration signals are monitored online.Secondly,based on empirical mode decomposition(EMD)and envelope spectrum analysis,the effective components of vibration signal are determined and the fault features are extracted to diagnose the rolling bearing fault off-line.Finally,the feasibility of the system was verified through experiments.The experimental results show that the monitoring system can obtain the rolling bearing state parameters quickly and conveniently,at the same time identify the faults accurately and reliably,which can meet the requirements of visual monitoring of rolling bearing condition and early fault diagnosis.
作者 李新杰 童靳于 LI Xinjie;TONG Jinyu(Anhui University of Technology,Ma'anshan Anhui 243032,China)
机构地区 安徽工业大学
出处 《佳木斯大学学报(自然科学版)》 CAS 2021年第4期80-83,125,共5页 Journal of Jiamusi University:Natural Science Edition
基金 安徽省高校自然科学研究重点项目(KJ2019A0092) 安徽工业大学青年基金(QZ201711)资助 安徽省大学生创新创业训练计划项目(S202110360255)。
关键词 滚动轴承 状态监测 故障诊断 经验模态分解 包络谱分析 rolling bearing condition monitoring fault diagnosis empirical modal decomposition envelope spectrum analysis
  • 相关文献

参考文献10

二级参考文献99

共引文献421

同被引文献41

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部