期刊文献+

CRISPR-mediated host genomic DNA damage is efficiently repaired through microhomology-mediated end joining in Zymomonas mobilis

原文传递
导出
摘要 CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against mobile genetic elements(MGEs)through uptake of invader-derived spacers.De novo adaptation samples spacers from both invaders and hosts,whereas primed adaptation shows higher specificity to sample spacers from invaders in many model systems as well as in the subtype I-F system of Zymomonas mobilis.Self-derived spacers will lead to CRISPR self-interference.However,our in vivo study demonstrated that this species used the microhomology-mediated end joining(MMEJ)pathway to efficiently repair subtype I-F CRISPR-Cas system-mediated DNA breaks guided by the self-targeting spacers.MMEJ repair of DNA breaks requires direct microhomologous sequences flanking the protospacers and leads to DNA deletions covering the protospacers.Importantly,CRISPR-mediated genomic DNA breaks failed to be repaired via MMEJ pathway in presence of higher copies of short homologous DNA.Moreover,CRISPR-cleaved exogenous plasmid DNA was failed to be repaired through MMEJ pathway,probably due to the inhibition of MMEJ by the presence of higher copies of the plasmid DNA in Z.mobilis.Our results infer that MMEJ pathway discriminates DNA damages between in the host chromosome versus mobile genetic element(MGE)DNA,and maintains genome stability post CRISPR immunity in Z.mobilis.
出处 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2021年第2期115-122,共8页 遗传学报(英文版)
基金 supported by the National Natural Science Foundation of China(31671291 to N.P.,31570055 to M.H.,and 31900400 to T.L.) the Fundamental Research Funds for the Central Universities(2662019PY028 to N.P.) National Natural Science Foundation of China(31900400)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部