摘要
含多耦合节点的区域综合能源系统存在多能量形式的深度耦合,节点连接关系更加复杂,难以直接利用单一网络进行计算和评估。基于异质依存网络进行电-气区域综合能源系统弹性评估。首先,基于耦合元件的电气解耦,建立了电-气区域综合能源系统的双层异质依存网络模型,并转化为双层双向图;其次,提出综合考虑脆弱性和恢复力的弹性指标,采用复数形式表示并基于双层双向图进行弹性指标计算,再提出几何平均G1-反熵权法计算得到综合弹性值。最后,通过电-气区域综合能源系统弹性评估算例,验证了所提方法的正确性和有效性。
In the regional integrated energy system with multiple coupling nodes,there is a deep coupling of multiple energy forms with more complicated node connections,difficult to calculate and evaluate directly using a single network.A resilience of the electricity-gas regional integrated energy system is evaluated based on the heterogeneous dependency network in this paper.Firstly,a two-layer heterogeneous interdependent network model of the electric-gas regional integrated energy system is established based on the electrical-gas decoupling of the coupling units.This model is then transformed into a two-layer bidirectional graph.Secondly,the quantitative resilience indices comprehensively considering the fragility and resilience are proposed,and these indices are expressed with plural forms and are calculated based on the two-layer two-dimensional graph.Thirdly the geometric average G1-anti-entropy method is proposed to obtain the comprehensive resilience value.Finally,the resilience evaluation example of the electricity-gas regional integrated energy system is used to validate the correctness and effectiveness of the proposed method.
作者
彭寒梅
李才宝
刘健锋
苏永新
谭貌
PENG Hanmei;LI Caibao;LIU Jianfeng;SU Yongxin;TAN Mao(College of Automation and Electronic Information,Xiangtan University,Xiangtan 411105,Hunan Province,China;Hunan Engineering Research Center of Multi-energy Cooperative Control Technology(Xiangtan University),Xiangtan 411105,Hunan Province,China)
出处
《电网技术》
EI
CSCD
北大核心
2021年第7期2811-2820,共10页
Power System Technology
基金
国家自然科学基金项目(51777179)
湖南省自然科学基金项目(2020JJ4580)。
关键词
电-气区域综合能源系统
弹性评估
异质依存网络
双层双向图
几何平均G1-反熵权法
electricity-gas regional integrated energy system
resilience assessment
heterogeneous interdependent network
two-layer bidirectional graph
geometric average G1-anti-entropy weight method