期刊文献+

低能Pt原子团簇沉积过程的分子动力学模拟 被引量:7

Molecular dynamics simulations of low-energy Pt cluster deposition
原文传递
导出
摘要 利用分子动力学模拟系统研究了低能Pt38,Pt1 41 和Pt2 6 6 原子团簇与Pt(0 0 1)表面的相互作用过程 ,详细分析了初始原子平均动能为 0 .1,1.0和 10eV的原子团簇的沉积演化过程及其对基体表面形貌的影响 .研究表明 ,初始原子平均动能是描述低能原子团簇的重要参量 .当团簇的平均原子动能较低时 ,团簇对基体表层原子点阵损伤较小 ,基本属于沉积团簇 ;随着入射团簇的原子平均动能的增加 ,团簇对表层原子点阵结构的破坏能力增强 ,当团簇的原子平均动能增加到 10eV时 ,团簇已经显现出注入特征 .低能原子团簇对基体表面形貌的影响主要取决于团簇的初始原子平均动能 ,但随着团簇所含原子数目的增加 ,低能原子团簇对基体表面的影响略有增强 .此外 。 Molecular dynamics simulations have been applied to the investigation of the deposition of low-energy Pt-38 , Pt-141, and Pt-266 clusters on Pt(001) surface. The evolution process of cluster deposition with atomic average kinetic energies (E-a) Of 0.1, 1.0 and 10eV and the effects on the substrate surface morphology have been analyzed. Simulation results show that E-a is an important parameter to describe behaviours of the clustes. Clusters with low E-a cannot damage the surface lattice seriously and the clusters can be considered as a deposition cluster. The power of cluster damaging surface lattice increases with the increase of E-a. When E-a = 10eV, the clusters can implant into the substrate. The effects of low energetic clusters on substrate surface morphology are also determined by E-a. The effects of clusters with more atoms, however, are stronger than that with fewer atoms. The mechanisms of the interactions between low-energy clusters and substrate surface are also discussed in this paper.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2002年第12期2798-2803,共6页 Acta Physica Sinica
基金 国家自然科学基金 (批准号 :10 0 75 0 0 9)资助的课题~~
关键词 分子动力学模拟 低能原子团簇 载能沉积 薄膜制备 Pt原子团簇 铂原子 molecular dynamics simulation low energy cluster energetic deposition
  • 相关文献

参考文献16

  • 1[1]Yamada Y, Usui H and Takagi T 1986 Z. Phys. D 3 137
  • 2[2]Yamada Y 1989 Appl. Surf. Sci. 43 23
  • 3[3]Haberland H, Karrais M, Hall M and Thurner Y 1992 J. Vac. Sci. Technol. A 10 3266
  • 4[4]Haberland H, Mall M, Moseler M, Qiang Y, Reiners T and Thurner Y 1994 J. Vac. Sci. Technol. A 12 2925
  • 5[5]Haberland H, Insepov Z, and Moseler M 1993 Z.Phys. D 26 229
  • 6[6]Luedtke W D and Landman U 1994 Phys. Rev. Lett. 73 569
  • 7[7]Averback R S and Ghaly M 1994 Nucl. Instru. Meth. B 90 191
  • 8[8]Lee R W, Pan Z Y and Ho Y K 1996 Phys. Rev. B 53 4156
  • 9[12]Betz G and Husinsky W 1997 Nucl. Instru. Meth. B 122 311
  • 10[14]Berendsen H J C,Postona J P M, Van Gunstern W F, Di Nola A and Haak J R 1984 J. Chem. Phys. 81 3684

同被引文献53

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部