期刊文献+

椭圆曲线y^(2)=x^(3)-13x-138的整数点 被引量:3

INTEGRAL POINTS ON THE ELLIPTIC CURVE OF y^(2)=x^(3)-13x-138
原文传递
导出
摘要 利用初等方法证明了椭圆曲线y^(2)=x^(3)-13x-138仅有整数点(x,y)=(6,0). The elementary number theory methods were used to prove the integral points on the elliptic curve of y^(2)=x^(3)-13x-138,the results showed that the elliptic curve had the only integral point of(x,y)=(6,0).
作者 过静 杜先存 GUO Jing;DU Xiancun(JiangXi Science and Technology Normal University,Nanchang,330013,China;Collage of Teachers Education,Honghe University,Mengzi 661199,China)
出处 《内蒙古农业大学学报(自然科学版)》 CAS 2021年第3期93-96,共4页 Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金 云南省教育厅科学研究项目(2019J1182)。
关键词 椭圆曲线 整数点 同余 Elliptic curve integer point congruence
  • 相关文献

参考文献4

二级参考文献25

  • 1Baker A.Linear forms in the logarithms of algebraic number Ⅰ.Mathematika,1966.13:204-216; Ⅱ ibid,1967,14:102-107:Ⅲ ibid,1967.14:220-228; Ⅳ ibid; 1968,15:204-216.
  • 2Stroeker R J,Tzanakis N.Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms.Acta Arith,1994,29(2):177-196.
  • 3Stroeker R J,Tzanakis N.On the elliptic logarithm method for elliptic diophantine equations:reflections and an improvement.Experimental Mathemetics,1999,8(2):135-149.
  • 4Stroeker R J,Tzanakis N.Computing all integer solutions of a genus 1 equation.Math Comp.,2003,72:1917-1933.
  • 5Bremner A,Tzanakis N.Integral points on y2=x3-7x+10.Math Comp.,1983,41(164):731-741.
  • 6Zhu Hui Lin,Chen Jian Hun.Integral point on a class of elliptic curve.Wuhan University-Journal of Natural Sciences,2006,11(3):477-480.
  • 7Zhu Hui Lin,Chen Jian Hua.Integral point on certain elliptic curve.Padova:Rend.Sem.Mat.Univ.,2008,119:1-20.
  • 8Zagier D.Large integral point on elliptic curves.Math Comp.,1987,48(177):425-536.
  • 9Hua Luo Geng.Introduction to number theory.Beijing:Science Press,1979.
  • 10Buchmann J.A generalization of Voronoi's unit algorithm (ⅠⅡ).Journal of Number Theory,1985,20:177-209.

共引文献45

同被引文献25

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部