期刊文献+

一类差分方程的动力学性质 被引量:5

Dynamic Properties of a Class of Difference Equations
原文传递
导出
摘要 【目的】研究一类差分方程的动力学性质。【方法】通过讨论系数参数与特征值的关系得到了双曲不动点的类型与稳定性,利用中心流形定理和分支理论研究了非双曲不动点的稳定性与flip分支,通过正规形理论与嵌入连续流等方法研究了特征值为±1的退化不动点的稳定性。【结果】得到了2-周期轨的稳定性、非双曲不动点的拓扑结构和退化不动点的稳定性。【结论】得到了一类差分方程的动力学性质。 [Purposes]The dynamic properties of a class of difference equations are studied.[Methods]Firstly,the types and stability of hyperbolic fixed points are obtained by discussing the relationship between coefficient parameters and eigenvalues,and then the stability and flip bifurcation of non-hyperbolic fixed points are studied by using center manifold theorem and bifurcation theory.By means of normal form theory and embedded continuous flow method,the stability of the degenerate fixed point with eigenvalues±1 is obtained.[Findings]The stability of 2-periodic orbit,the topological structures of non-hyperbolic fixed points and the stability of the degenerate fixed point are given.[Conclusions]The dynamic properties of a class of difference equations are obtained.
作者 李明山 徐江明 周效良 LI Mingshan;XU Jiangming;ZHOU Xiaoliang(College of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 211106;School of Mathematics and Statistics,Lingnan Normal University,Zhanjiang Guangdong 524048,China)
出处 《重庆师范大学学报(自然科学版)》 CAS 北大核心 2021年第3期62-67,共6页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11961021) 广东省大学生科技创新培育专项资金(No.pdjh2021b0309) 广东省高校重点项目(No.2019KZDXM032)。
关键词 差分方程 flip分支 中心流形定理 退化不动点 稳定性 difference equation flip bifurcation center manifold theorem degenerated fixed point stability
  • 相关文献

参考文献1

二级参考文献25

  • 1Xing H, Yang K M,Wang B Y. Existence and global stabil- ity of periodic solution for delayed discrete high-order hopfifled-type neural networks[J]. Discrete Dyn Nat Soc, 2005(3) :281-297.
  • 2Terry A J. A predator-prey model with generic birth and death rates for the predator[J]. Math Bios,2014,248:57 -66.
  • 3Bhattacharya S, Martcheva M, Li X Z. A predator-prey- dis- ease model with immune response in infected prey[J]. J Math Anal Appl,201,411(1) :297-313.
  • 4Fan L,Shi Z K, Tang S Y. Critical values of stability and Hopf bifurcations for a delayed population model with de- lay-dependent parameters[J]. Nonlinear Anal: Real World Appl,2010,11(1) :341-355.
  • 5Zhou Z Y. Global attractivity and periodic solution of a dis- crete multispecies coorperation and competition predator- prey system[EB/OL]. (2011-06-08) [2013-10-01]. http:// www. hindawi, com/journals/ddns/2011/835321/.
  • 6Li Y,Zhao K H, Ye Y. Multiple positive periodic solutions of species delay competition systems with harvesting terms[J]. Nonlinear Anal~ Real World Appl, 2011,12 (2) : 1013- 1022.
  • 7Gyllenberg M, Yan P, Wand Yi. Limit cycles for competi- tor-competitor-mutualist Lotka-Volterra systems[J]. Phys- ica D,2006,221(2) :135-145.
  • 8Sen M, Banerjee M, Morozov A. Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect [J]. Ecological Complexity,2012,11: 12-27.
  • 9Chakraborty K, Chakraborty M, Kar T K. Bifurcation and control of a bioeconomic model of a prey-predator system with a time delay[J]. Nonlinear Anal: Hybrid Sys, 2011,5 (4) :613-625.
  • 10Zhang R Y,Wang Z C,Chen Y,et al. Periodic solutions of a single species discrete population model with periodic harvest/stock[J]. Comput Math Appl, 2000,39 ( 1/2) : 77- 90.

共引文献1

同被引文献4

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部