期刊文献+

基于机器学习的高校学生评教信度分类分析 被引量:1

The Classification of the Reliability of College Students'Evaluation of Teaching Based on Machine Learning
下载PDF
导出
摘要 大学生在评教过程中存在态度敷衍、不客观的现象,如何使学生评教更加客观,改善学生评教质量是当前教师评教过程中亟待解决的问题。目前研究主要是对学生评教数据中偏离数据的分析、处理,在一定程度上解决了学生评教不客观的问题。该研究旨在通过对学生评教数据进行分析,多角度提取反映学生客观评教信度的指标,并对指标进行相关性分析,剔除冗余指标,最后利用K-Means++算法对学生评教信度分类,确定大学生在评教这一活动中具有的群体特征。对不同群体类别的学生评教信度进行星级反馈,起到警示、敦促学生的作用,进而提高学生评教信度,使教师评价更加公平、有效。 Perfunctory and non-objective attitude of college students can be seen in the evaluation process of teaching.How to make teaching evaluation more objective and improve the quality of it has become urgent issues.The current research is mainly on the analysis and processing of deviation data in evaluation data,which only solves the problem of non-objective evaluation of students to a certain extent.The purpose of this study is to analyze the students'evaluation data and extract more indicators which can objectively reflect students'evaluation reliability.Then,redundant indicators can be removed based on their correlations.Finally,K-means++algorithm is proposed to classify the teaching evaluation reliability.The experiment results show that college students have group characteristics in the teaching evaluation activities.Different categories of students are identified as different star levels,which can serve as feedback on the teaching evaluation reliability.By warning or urging students,the method can improve the credibility of teaching evaluation,and it can also make the results of evaluation fairer and more effective.
作者 苑迎春 雒明雪 陈江薇 YUAN Yingchun;LUO Mingxue;CHEN Jiangwei(College of Information Science and Technology,Hebei Agricultural University,Baoding 071000,Hebei;Academic Affairs Office,Hebei Agricultural University,Baoding 071000,Hebei)
出处 《河北农业大学学报(社会科学版)》 2021年第3期127-132,共6页 Journal of Hebei Agricultural University (SOCIAL SCIENCES)
基金 河北省高等教育教学改革研究与实践项目:“大数据背景下的高校学生评教置信度研究”(编号:2018GJJG140)的阶段性研究成果。
关键词 大学生评教 机器学习 信度分类 student evaluation of teaching machine learning reliability classification
  • 相关文献

参考文献17

二级参考文献155

共引文献214

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部