摘要
【目的】为解决现有工作推荐存在的难以大规模应用、冷启动、缺乏新颖性和解释性等问题,提出基于人才知识图谱推理的强化学习可解释推荐方法。【方法】基于真实的简历数据集构建人才社会经历知识图谱,依据强化学习的理论在知识图谱上训练一个策略智能体,将一次推理过程分解为选择方向、选择节点两个子过程,使其能够在知识图谱上寻找潜在的优质推荐目标。【结果】相比于LR、BPR、JRL-int、JRL-rep及PGPR模型,基于人才知识图谱推理的强化学习可解释推荐模型在MRR@20(81.7%)、Hit@1(74.8%)、Hit@5(92.2%)以及Hit@10(97.0%)均表现最优。【局限】实验数据集规模和任务类型相对有限。【结论】该模型有效结合人才历史工作经历、相似人才工作经历进行推荐,结合知识图谱工作岗位的属性关联,在给出推荐结果的同时,提供推理路径,能够有效应对冷启动和缺乏新颖性、可解释性问题。
[Objective]This paper proposes an interpretable reinforcement learning method for job recommendation based on talent knowledge graph reasoning,which addresses the issues of difficulties in largescale application,cold start,and lack of novelty.[Methods]First,we constructed a knowledge graph for the social experience of the job applicants based on their resume data.Then,we trained a strategic agent with the knowledge graph and the theory of reinforcement learning.This algorithm,which divided the reasoning process into choosing directions and nodes,could identify potential high-quality recommendation targets from the knowledge graph.[Results]The MRR@20(81.7%),Hit@1(74.8%),Hit@5(92.2%)and Hit@10(97.0%)of the proposed model were higher than those of the LR,BPR,JRL-int,JRL-rep and PGPR models.[Limitations]The size of the experimental datasets and the task-types needs to be further expanded.[Conclusions]Our model could effectively recommend jobs for applicants based on their previous experience or other successful recommendations.It also provides reasoning paths with the help of knowledge graph.
作者
阮小芸
廖健斌
李祥
杨阳
李岱峰
Ruan Xiaoyun;Liao Jianbin;Li Xiang;Yang Yang;Li Daifeng(School of Information Management,Sun Yat-Sen University,Guangzhou 510006,China)
出处
《数据分析与知识发现》
CSSCI
CSCD
北大核心
2021年第6期36-50,共15页
Data Analysis and Knowledge Discovery
基金
国家自然科学基金青年项目(项目编号:61702564)
广东省软科学面上项目(项目编号:2019A101002020)
国家自然科学基金面上项目(项目编号:72074231)的研究成果之一。
关键词
工作推荐
知识图谱推理
强化学习
可解释推荐
Work Recommendation
Knowledge Graph Reasoning
Reinforcement Learning
Interpretable Recommendation