摘要
针对机器人工程专业四年级学生开设的移动机器人控制实验,循序渐进地设计了基于深度学习的移动机械手抓取实验项目。从激光雷达同时定位与建图、自主导航与实时避障,到借助ROS的通信机制完成语音控制导航以及物体识别与检测,构建深度学习网络生成最优抓取位姿,并利用MoveIt功能包控制机械臂完成抓取动作。实践教学表明,基于项目式实验教学模式有利于把大学阶段多门课程知识有机交叉融合,本教学方式可提高学生解决复杂工程问题的能力。
Aiming at the mobile robot control experiment set up for the senior of robot engineering specialty, a mobile manipulator grasping experiment project based on deep learning is designed step by step. From simultaneous localization and mapping by lidar, autonomous navigation and real-time obstacle avoidance, to the completion of voice control navigation and object recognition and detection with the help of the communication mechanism of ROS, a deep learning network is constructed to generate the optimal grasping position and pose, and the manipulator is controlled by MoveIt to complete the grasping action. The practical teaching shows that the project-based experimental teaching mode really integrates the knowledge of multiple courses learned in the university and greatly improves the students’ ability to solve complex engineering problems.
作者
王帅
王军义
贾子熙
白帆
王冬冬
WANG Shuai;WANG Junyi;JIA Zixi;BAI Fan;WANG Dongdong(Faculty of Robot Science and Engineering,Northeastern University,Shenyang 110819,China)
出处
《实验室研究与探索》
CAS
北大核心
2021年第6期33-37,53,共6页
Research and Exploration In Laboratory
基金
国家自然科学基金项目(61973063)。
关键词
移动机器人
新工科教育
机械臂最优抓取位姿
物体识别与检测
mobile robot
emerging engineering education
optimal grasping position and pose
object recognition and detection