期刊文献+

基于最近邻区间的不完整基因表达数据多目标聚类算法 被引量:2

Multi-objective clustering algorithm based on the nearest neighbor interval for incomplete gene expression data
下载PDF
导出
摘要 针对不完整基因表达数据的聚类问题,提出了一种多目标NSGA-Ⅱ框架下缺失值填补与聚类协同优化的算法.算法根据欧式距离确定不完整基因的近邻基因,以缺失值的最近邻区间为约束,采用混合编码将缺失值填补与聚类中心优化融入NSGA-Ⅱ进化过程,通过将数据集的统计信息与聚类结果共同作为缺失值填补因素,提升不完整基因表达数据的填补准确度及聚类性能.在多个基因表达数据集上的实验结果表明,所提算法得到了更接近真实表达值的填补结果及更紧凑的聚类效果,且聚类结果具有统计显著性. Aiming at the problem of clustering incomplete gene expression data,a collaborative optimization algorithm for missing value imputation and clustering is proposed in the framework of multi-objective NSGA-Ⅱ.The algorithm determines the neighbor genes of incomplete genes according to Euclidean distance.Constrained by the nearest neighbor interval of missing value,the algorithm combines missing value imputation with clustering center optimization into NSGA-Ⅱby mixed encoding.Taking statistical information of datasets and the clustering results into account is helpful to improve the imputation accuracy and clustering performance.Experimental results on multiple gene expression datasets show that the proposed algorithm obtains an imputation result closer to the true expression value and a more compact clustering effect.Furthermore,the proposed algorithm proves to be statistically significant.
作者 常巧珍 曹隽喆 顾宏 李丹 CHANG Qiaozhen;CAO Junzhe;GU Hong;LI Dan(School of Control Science and Engineering,Dalian University of Technology,Dalian 116024,China)
出处 《大连理工大学学报》 CAS CSCD 北大核心 2021年第4期416-423,共8页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(81872247).
关键词 基因表达数据 缺失值 多目标聚类 最近邻规则 gene expression data missing value multi-objective clustering the nearest neighbor rule
  • 相关文献

参考文献2

二级参考文献71

  • 1范瑜,金荣洪,耿军平,刘波.基于差分进化算法和遗传算法的混合优化算法及其在阵列天线方向图综合中的应用[J].电子学报,2004,32(12):1997-2000. 被引量:44
  • 2[1]Brown P O,Botstein D.Exploring the new world of the genome with DNA microarrays.Nature Genetics,1999,21(1):33-37
  • 3[2]Jain A K,Murty M N,Flynn P J.Data clustering:a review.ACM Computing Surveys,1999,31(3):264-323
  • 4[3]Schena M,Shalon D,Davis R W,Brown P O.Quantitative monitoring of gene expression patterns with a complementary DNA microarray.Science,1999,270(5235):467-470
  • 5[4]Schena M,Scalon D,Heller R.Parallel human genome analysis:microarray-based expression monitoring of 1000 genes.Proceedings of the National Academy of Sciences of the United States of America,1996,93(20):10614-10619
  • 6[5]Ramsay G.DNA chips:state-of-the art.Nature Biotechnology,1998,16(1):40-44
  • 7[6]Lockhart D J,Dong H,Byrne M C,Follettie M T,Gallo M V,Chee M S.Expression monitoring by hybridization to high-density oligonucleotide arrays.Nature Biotechnology,1996,14(13):1675-1680
  • 8[7]Lipshutz R J,Fodor S P,Gingeras T R,Lockhart D J.High density synthetic oligonucleotide arrays.Nature Genetics,1999,21(1):20-24
  • 9[8]Harrington C A,Rosenow C,Retief J.Monitoring gene expression using DNA microarrays.Current Opinion in Microbiology,2000,3(3):285-291
  • 10[9]Jiang D X,Pei J,Zhang A D.An interactive approach to mining gene expression data.IEEE Transactions on Knowledge and Data Engineering,2005,17(10):1363-1378

共引文献65

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部