摘要
本文提出用卷积神经网络对阻塞性呼吸暂停和中枢性呼吸暂停所致的鼾声进行分类,并提出了鼾声的完整上气道冲激响应特征,设计了1维卷积神经网络对这两种鼾声做了分类处理和识别.运用多组输入特征对该网络分类性能做了评估,结果表明完整上气道冲激响应特征作为输入参数的平均正确率达到79%,高于其他特征作为输入参数的结果.
In this paper,we present to use convolutional neural network to classify two different pathological snoring sounds,these two pathologies snoring are caused by obstructive sleep apnea and central sleep apnea respectively during night.We consider snoring caused by different pathologies with different acoustic characteristics in signal processing,propose a complete upper airway impulse response feature of snoring,and use our designed one-dimensional convolutional neural network to classify and recognize two type snoring sounds.Multiple sets of input features are used to evaluate the performance of the ID CNN classification.The results show that the average accuracy of the complete upper airway impulse response feature as an input parameter reaches 79%,which is higher than the results of other features as input parameters.
作者
侯丽敏
刘焕成
张新鹏
HOU Limin;LIU Huancheng;ZHANG Xinpeng(School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China)
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2021年第3期367-374,共8页
Journal of Fudan University:Natural Science
基金
国家自然科学基金(U1636206)
上海科学技术委员会项目(13441901600)。
关键词
阻塞性呼吸暂停
中枢性呼吸暂停
鼾声
卷积神经网络
obstructive sleep apnea
central sleep apnea
snoring sound
convolutional neural network