期刊文献+

单路径导引的车式移动机器人协同编队控制 被引量:5

Coordinated formation control of car-like mobile robots guided by parameterized single path
下载PDF
导出
摘要 针对含有模型不确定性和未知外部扰动的车式移动机器人集群,本文设计了一种分布式协同编队控制器,通过单条参数化路径导引,实现了车式移动机器人协同编队运动.本文首先在运动学层级设计了基于领航–跟随策略的队形制导律和路径更新律,其次在动力学层级设计了前向速度和姿态角控制律,通过线性扩张状态观测器估计并补偿系统模型中的非线性部分,消除参数摄动和外部扰动造成的不利影响,然后通过级联系统理论证明了闭环系统的输入到状态稳定性,最后通过数字仿真和加热机群实验结果验证了本文控制器的有效性. In this paper,a distributed coordinated formation controller is proposed for a platoon of car-like mobile robots(CLMRs)moving along parameterized single path,which are subject to model uncertainties and unknown external disturbances.On the kinematics level,leader-follower-based distributed formation guidance laws and path update laws are designed to follow the path with desired velocity.Then,the longitudinal velocity and heading angle control laws are developed on the kinetic level.The nonlinear term is estimated by linear extended state observer(LESO),such that the model uncertainties and unknown external disturbances are compensated and the unfavorable influences are mitigated.The input-to-state stability of the closed-loop system is established via cascade theory.Finally,the effectiveness of the proposed controller is verified via simulation results and experiments on the hot-in-place preheater vehicles.
作者 王常顺 王丹 彭周华 WANG Chang-shun;WANG Dan;PENG Zhou-hua(School of Marine Electrical Engineering,Dalian Maritime University,Dalian Liaoning 116000,China;School of Information Science and Electrical Engineering,Shandong Jiaotong University,Jinan Shandong 250357,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2021年第7期1124-1132,共9页 Control Theory & Applications
基金 国家自然科学基金项目(51979020,52071044,61803230)资助。
关键词 车式移动机器人 协同编队控制器 线性扩张状态观测器 级联系统稳定性 car-like mobile robot coordinated formation controller linear extended state observer cascade system stability
  • 相关文献

参考文献6

二级参考文献54

  • 1李胜,马国梁,胡维礼.基于Backstepping方法的车式移动机器人轨迹追踪控制[J].东南大学学报(自然科学版),2005,35(2):248-252. 被引量:21
  • 2Farinelli A, Locchi L, Nardi D.Multirobot systems: A classification focused on coordination[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(5): 2015-2028.
  • 3Balch T, Arkin R C.Behavior-based formation control for multirobot teams[J].IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939.
  • 4Lawton J R T, Beard R W, Young B J.A decentralized approach to formation maneuvers[J].IEEE Transactions on Robotics and Automation, 2003, 19(6): 933-941.
  • 5Wang Y, Yan W, Li J.Passivity-based formation control of autonomous underwater vehicles[J].IET Control Theory and Applications, 2012, 6(4): 518-525.
  • 6Wei R, Sorensen N.Distributed coordination architecture for multi-robot formation control[J].Robotics and Autonomous Systems, 2008, 56(4): 324-333.
  • 7Ghommam J, Mehrjerdi H, Saad M, et al.Formation path following control of unicycle-type mobile robots[J].Robotics and Autonomous Systems, 2010, 58(5): 727-736.
  • 8Mehrjerdi H, Ghommam J, Saad M.Nonlinear coordination control for a group of mobile robots using a virtual structure[J].Mechatronics, 2011, 21(7): 1147-1155.
  • 9Consolini L, Morbidi F, Prattichizzo D, et al.Leader-follower formation control of nonholonomic mobile robots with input constraints[J].Automatica, 2008, 44(5): 1343-1349.
  • 10Shao J, Xie G, Wang L.Leader-following formation control of multiple mobile vehicles[J].IET Control Theory and Applications, 2007, 1(2): 545-552.

共引文献56

同被引文献38

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部