期刊文献+

联合多重卷积与注意力机制的网络入侵检测 被引量:3

Network intrusion detection based on multiple convolutions and attention mechanism
下载PDF
导出
摘要 利用深度学习方法建立一种网络入侵检测模型CAL.该模型通过多重卷积提取数据流的深层特征,利用注意力机制提取代表数据流结构特点的关键特征,以提高对不同数据流特点的表达能力,并通过池化计算压缩数据,提高模型泛化能力,使用基于CuDNN加速的长短时记忆网络,在学习数据流上下文特征和时序信息的同时,加速模型收敛.在数据集UNSW-NB15上进行实验,结果表明,CAL模型的识别准确率为90.37%,多类型入侵流的识别准确率为78.94%,性能表现优于其他已有方法. A network intrusion detection model named CAL is proposed by using deep learning method.The important features of the data flow are extracted through multiple convolutions in this model.The attention mechanism is utilized to extract the key features representing the structural characteristics of the data flow,so as to express the characteristics of various types of flows.And the pooling calculation is used to compress data and improve the generalization ability of the model.The CuDNN based long short term memory network is applied to accelerate the model convergence and reduce the cost while learn the context characteristics and time related information of the data flow.Experimental results on the UNSW-NB15 dataset show the recognition accuracy of CAL is 90.37%,and the recognition accuracy for multi-type intrusion flows is 78.94%.The performance is better than other existing methods.
作者 曹轲 朱金奇 马春梅 杜恬 邹馨雨 CAO Ke;ZHU Jinqi;MA Chunmei;DU Tian;ZOU Xinyu(College of Computer and Information Engineering,Tianjin Normal University,Tianjin 300387,China)
出处 《天津师范大学学报(自然科学版)》 CAS 北大核心 2021年第3期75-80,共6页 Journal of Tianjin Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(61902282,62002263) 天津市自然科学基金资助项目(17JCYBJC16400,18JCYBJC85900,18JCQNJC70200).
关键词 网络入侵检测 多重卷积 数据流 特征提取 UNSW-NB15数据集 network intrusion detection multiple convolutions data flows feature extraction UNSW-NB15 dataset
  • 相关文献

参考文献1

二级参考文献14

共引文献11

同被引文献22

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部