摘要
本文通过数值模拟的方法探究了百叶窗翅片开窗角度α、开窗宽度L_w对翅片管传热流动性能的影响,结果表明,平均Nu数在33.45~43.41之间变化,阻力系数f在1.13~2.44之间变化。结合神经网络训练及遗传算法,选取了开窗角度α、开窗宽度L_(w)以及翅片间距L_(p)为优化参数,设计综合性能最优的百叶窗翅片结构。遗传算法优化后得到的翅片管(开窗角度为24.40°,开窗宽度为1.21 mm,翅片间距为1.43 mm)其平均Nu数为39.01,f为1.61。
In this paper,a numerical simulation was carried out to investigate the influence of the louver angle a and louver width Lw on the heat transfer performance and flow characteristics of a fin-and-tube heat exchanger(FTHX).The results show that the Nusselt number varies between 33.45~43.41 and the friction factor varies between 1.13~2.44.Combining the neural network training and genetic algorithm,the louver angle α,louver width Lw and fin spacing Lp were chosen as optimization parameters to design the fin structure with the best comprehensive performance.The Nu and f for the optimal fin-and-tube heat exchanger(α=24.40°,L_(w)=1.21 mm and L_(p)=1.43 mm)is 39.01 and 1.61,respectively.
作者
吴嘉丰
刘志春
刘伟
WU Jia-Feng;LIU Zhi-Chun;LIU Wei(School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2021年第7期1821-1826,共6页
Journal of Engineering Thermophysics
基金
国家自然科学基金资助项目(No.51736004)。
关键词
百叶窗翅片
数值模拟
多目标优化
louvered fin:numerical simulation
multi-objective optimization