期刊文献+

基于正交频谱重构的微波三维成像方法

Microwave 3D imaging method based on orthogonal spectrum reconstruction
下载PDF
导出
摘要 传统微波三维成像方法的回波数据量非常大,基于目标场景稀疏的压缩感知成像方法虽然可以降低采样率和数据量,但字典矩阵内存占用巨大,且对连续分布目标成像效果不佳。针对上述问题,本文分析了目标回波在三维频域的数据分布特征,根据构建的频谱正交投影重构模型实现了目标三维频谱的重构。为了进一步优化重构模型,以最小图像熵作为判别准则对重构的正则化参数进行了最优估计,并得到最优的频谱重构结果。本文所提方法具有较好的成像效果,较高的运算速度和较小的内存占用。计算机仿真实验和微波暗室实验验证了本文所提方法的有效性。 The size of echo signal data of the tranditional microwave three-dimensional imaging system is extremely high.Compressed sensing imaging methods based on sparse representation of target scene can reduce the sampling rate and data size,but the dictionary matrix takes a lot of memory and has a poor imaging quality for continuously distributed target.For these problems,this paper constructs an orthogonal projection wavefront reconstruction model to reconstruct the target three-dimensional spectrum,which based on the analysis of the echo data’s characteristics in three-dimensional frequency domain.To further optimize the reconstruction model,the minimum image entropy is used as the criterion to optimum estimate the regularization parameters of reconstruction.The proposed method has the advantages of higher computing speed,less memory space,and better imaging quality for the continuously distributed target.The computer simulation experiment and microwave anechoic chamber measurement experiment verify the effectiveness of the proposed method.
作者 张研 王保平 方阳 宋祖勋 ZHANG Yan;WANG Baoping;FANG Yang;SONG Zuxun(School of Electronic and Information, Northwestern Polytechnical University, Xi’an 710072, China;Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi’an 710065, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2021年第8期2090-2098,共9页 Systems Engineering and Electronics
基金 国家自然科学基金(61472324)资助课题。
关键词 微波成像 三维成像 频谱重构 稀疏重构 图像熵 microwave imaging three-dimensional imaging spectrum reconstruction sparse reconstruction image entropy
  • 相关文献

参考文献7

二级参考文献41

  • 1Shi J,Zhang X L,Yang J Y, et al. APC trajectory design for“one-active” linear-array three-dimensional imaging SAR[J],IEEE Trans, on Geoscience and Remote Sensing , 2010,48(3):1470 - 1486.
  • 2Shi J, Zhang X L,Xiang G, et al. Signal processing for micro-wave array imaging: TDC and sparse recovery[J]. IEEE Trans,on Geoscience and Remote Sensing . 2012,50(11): 4584 - 4598.
  • 3Ender J H,Klare J. System architectures and algorithms for ra-dar imaging by MIMO-SAR[C] // Proc. of the IEEE Radar Con-ference . 2009 : 1-6.
  • 4Xie W C,Zhang X L, Shi J. MIMO antenna array design for air-borne down-looking 3D imaging SAR[C] // Proc. of the IEEEInternational Conference on Signal Processing Systems,2010:452 - 456.
  • 5张晓玲,向高,师君.一种稀疏MIMO平面阵列雷达天线构建方法[P].中国:201210000517,2013 -06 - 12.
  • 6Wu Q S, Zhang Y D,Amin M G,et al. Focusing of tandembistatic SAR data using range Doppler algorithm[C] // Proc. ofthe IEEE Radar Conference , 2014 : 927 - 931.
  • 7Zare A,Masnadi-Shirazi M A, Samadi S. Range-Doppler algo-rithm for processing bistatic SAR data based on the LBF in theconstant-offset constellation [ C] // Proc. of the IEEE RadarConference , 2012 : 17-21.
  • 8Greengard L, Lee J Y. Accelerating the nonuniform fast Fouriertransform[J], Society for Industrial and Applied MathematicsReview, 2004, 46(3): 443 -454.
  • 9Jin X X,Seok-Bum K. GPU-based parallel implementation ofSAR imaging[Cj // Proc. of the International Symposium, onElectronic System Design,2012 : 125 - 129.
  • 10Malanowski M,Krawczyk G,Samczynski P,et al. Real-timehigh-resolution SAR processor using CUDA technology [C]Proc. of the International Radar Symposium .2013 :673 - 678.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部