摘要
针对目前合成孔径雷达(synthetic aperture radar,SAR)在对大尺度瞬时海岸线提取方面的图像解译过程中,仍然存在精度低与自动化水平差的问题,提出一种基于深度学习网络的瞬时海岸线自动提取算法。首先,将SAR图像进行Lee滤波增强来抑制相干斑。其次,通过升级残差网络为主干网络,分4级提取海水目标的特征。然后,将4级特征经过全局卷积网络、密集连接网络和解码器网络配合,充分提取目标的本质特征,并通过上采样产生海水分割结果。最后,利用Sobel算子分离出海岸线并和原SAR图像融合以便清晰查看结果。通过与全卷积网络与细化网络的海岸线提取实验结果进行对比,证明所提算法对海岸线的提取更加准确,能够减少虚警和漏警,具有更好的性能。
Aiming at the problems of low accuracy and automation in the process of image interpretation of large-scale instantaneous coastline extraction by synthetic aperture radar(SAR),a instantaneous coastline automatic extraction algorithm based on deep learning network is proposed.Firstly,the enhancing Lee filter is used to suppressing speckle noise for SAR image.Secondly,the features of seawater targets are extracted in four levels by upgrading the residueal network as the backbone network.Then,the four levels of features pass through global convolutional network,dense connection network and decoder network to extract the essential features.The sea water segmentation results are obtained by the upsampling process.Finally,the results can be clearly viewed by separating the coastline using Sobel operator and fusing it with the original SAR image.Compared with the coastline extraction experimental results of full convolutional network and refinement network,the experimental results show that the proposed algorithm has less false alarm and miss alarm results,and the accuracy extraction of the obtained coastline results,which has better performance.
作者
王彬
王国宇
WANG Bin;WANG Guoyu(College of Information Science & Engineering, Ocean University of China, Qingdao 266100, China;School of Information Science&Technology,Qingdao University of Science&Technology,Qingdao 266061,China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2021年第8期2108-2115,共8页
Systems Engineering and Electronics
基金
国家自然科学基金(61702295)资助课题。
关键词
海岸线提取
合成孔径雷达图像阴影水体提取
深度学习
编码解码网络
coastline extraction
synthetic aperture radar(SAR)image shadow water extraction
deep learning
coding and decoding network