期刊文献+

Lunar cratering asymmetries with high lunar orbital obliquity and inclination of the Moon 被引量:1

下载PDF
导出
摘要 Accurate estimation of cratering asymmetry on the Moon is crucial for understanding Moon evolution history.Early studies of cratering asymmetry have omitted the contributions of high lunar obliquity and inclination.Here,we include lunar obliquity and inclination as new controlling variables to derive the cratering rate spatial variation as a function of longitude and latitude.With examining the influence of lunar obliquity and inclination on the asteroids population encountered by the Moon,we then have derived general formulas of the cratering rate spatial variation based on the crater scaling law.Our formulas with addition of lunar obliquity and inclination can reproduce the lunar cratering rate asymmetry at the current Earth-Moon distance and predict the apex/ant-apex ratio and the pole/equator ratio of this lunar cratering rate to be 1.36 and 0.87,respectively.The apex/ant-apex ratio is decreasing as the obliquity and inclination increasing.Combining with the evolution of lunar obliquity and inclination,our model shows that the apex/ant-apex ratio does not monotonically decrease with Earth-Moon distance and hence the influences of obliquity and inclination are not negligible on evolution of apex/ant-apex ratio.This model is generalizable to other planets and moons,especially for different spin-orbit resonances.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第6期281-293,共13页 天文和天体物理学研究(英文版)
基金 funding from the Australian Government the Government of Western Australiasupported by the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant Nos.XDB41000000 and NSFC 41972321) NSFC 41674098 CNSA D020205 the B-type Strategic Priority Program of the Chinese Academy of Sciences,Grant No.XDB18010104。
  • 相关文献

参考文献1

二级参考文献114

  • 1Agnor, C. B., & Lin, D. N. C. 2012, ApJ, 745, 143.
  • 2Arthur, D. W. G., Agnieray, A. E, Horvath, R. A., Wood, C. A., & Chapman, C. R. 1964, Communications of the Lunar and Planetary Laboratory, 2, 71.
  • 3Benavidez, E G., Durda, D. D., Enke, B. L., et al. 2012, Icarus, 219, 57.
  • 4Bottke, W. F., Durda, D. D., Nesvom, D., et al. 2005, Icarus, 175, 111.
  • 5Bottke, W. F., Levison, H. F., NesvornS,, D., & Dones, L. 2007, Icarus, 190, 203.
  • 6Bottke, W. F., Vokrouhlick3, D., Minton, D., et al. 2012, Nature, 485, 78.
  • 7Bottke, W. F., Jr., Vokrouhlick3, D., Rubincam, D. E, & Nesvom, D. 2006, Annual Review of Earth and Planetary Sciences, 34, 157.
  • 8Chapman, C. R., Cohen, B. A., & Grinspoon, D. H. 2007, Icarus, 189, 233.
  • 9Chapman, C. R., & McKinnon, W. B. 1986, in Satellites, edited by J. A. Burns & M. S. Matthews, 492.
  • 10Cheng, A. F. 2004, Icarus, 169, 357.

共引文献4

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部