期刊文献+

TCLBM:A Task Chain-Based Load Balancing Algorithm for Microservices 被引量:2

原文传递
导出
摘要 The microservices architecture has been proposed to overcome the drawbacks of the traditional monolithic architecture.Scalability is one of the most attractive features of microservices.Scaling in the microservices architecture requires the scaling of specified services only,rather than the entire application.Scaling services can be achieved by deploying the same service multiple times on different physical machines.However,problems with load balancing may arise.Most existing solutions of microservices load balancing focus on individual tasks and ignore dependencies between these tasks.In the present paper,we propose TCLBM,a task chainbased load balancing algorithm for microservices.When an Application Programming Interface(API)request is received,TCLBM chooses target services for all tasks of this API call and achieves load balancing by evaluating the system resource usage of each service instance.TCLBM reduces the API response time by reducing data transmissions between physical machines.We use three heuristic algorithms,namely,Particle Swarm Optimization(PSO),Simulated Annealing(SA),and Genetic Algorithm(GA),to implement TCLBM,and comparison results reveal that GA performs best.Our findings show that TCLBM achieves load balancing among service instances and reduces API response times by up to 10%compared with existing methods.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2021年第3期251-258,共8页 清华大学学报(自然科学版(英文版)
  • 相关文献

二级参考文献59

  • 1Abdelrahman, E.M., El-Araby, T.M., El-Araby, H.M., Abo-Ezz, E.R., 2001 a. Three least squares minimization approaches to depth, shape, and amplitude coefficient determination from gravity data. Geophysics 66, 1105-1109.
  • 2Abdelrahman, E.M., El-Araby, T.M., El-Araby, H.M., Abo-Ezz, E.R., 2001b. A new method for shape and depth determinations from gravity data. Geophysics 66, 1774-1780.
  • 3Abdelrahman, E.M., Sharafeldin, S.M,, 1995a. A least-squares minimization approach to depth determination from numerical horizontal gravity gradients. Geophysics 60, 1259-1260.
  • 4Abdelrahman, E.M., Sharafeldin, S.M., 1995b, A least-squares minimization approach to shape determination from gravity data. Geophysics 60, 589-590.
  • 5Abdelrahman, E.M., El-Araby, T.M., 1993. A least-squares minimization approach to depth determination from moving average residual gravity anomalies. Geophysics 59, 1779-1784.
  • 6Abdelrahman, E.M., Bayoumi, A.I., El-Araby, H.M., 1991. A least-squares minimiza- tion approach to invert gravity data, Geophysics 56, 115-118.
  • 7Abdelrahman, E.M., 1990. Discussion on "A least-squares approach to depth determination from gravity data" by Gupta, O.P. Geophysics 55, 376-378.
  • 8Abdelrahman, E.M., Bayoumi, A.I., Abdelhady, Y.E., Gobash, M.M., EL-Araby, H.M., 1989. Gravity interpretation using correlation factors between successive least- squares residual anomalies. Geophysics 54, 1614-1621.
  • 9Asfahani, J., Tlas, M., 2012. Fair function minimization for direct interpretation of residual gravity anomaly profiles due to spheres and cylinders. Pure and Applied Geophysics 169, 157-165.
  • 10Beck, R.H., Qureshi, LR., 1989. Gravity mapping of a subsurface cavity at Marulan, N.S.W. Exploration Geophysics 20, 481-486.

共引文献2

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部