期刊文献+

基于重心动力学及虚拟模型的单腿平台运动控制

Motion Control of Single-leg PlatformBased on Centroidal Dynamics and Virtual Model
下载PDF
导出
摘要 传统单腿平台控制方法仅关注机身的运动,较难适用于腿部重量较大的单腿平台运动的准确控制。在单腿平台运动学及重心动力学建模基础上,提出了融合重心动力学及虚拟模型的控制方法。在单腿平台运动过程分析基础上,运用Simulink与Adams对单腿平台竖直干扰过程及下落缓冲过程进行动力学仿真,并与虚拟模型控制算法进行对比。结果表明,基于重心动力学及虚拟模型的控制方法,能够极大提高单腿平台的控制效果。 The traditional single-leg platform control method only focuses on the motion of the torso,which is difficult to be applied to the accurate control of the single-leg platform with large weight leg.In this paper,based on the single-leg platform kinematics and centroidal dynamics modeling,a control method combining centroidal dynamics and virtual model method is proposed.Based on the analysis of motion process of the single-leg platform,the vertical interference process and the falling buffer process of the single-leg platform are simulated by Simulink and Adams,and comparisons are made with the virtual model control algorithm.The results show that the control method based on centroidal dynamics and virtual model can greatly improve the control effect of single-leg platform.
作者 谭永营 晁智强 李华莹 韩寿松 TAN Yong-ying;CHAO Zhi-qiang;LI Hua-ying;HAN Shou-song(Department of Automobile Engineering,Academy of Army Armored Forces,Beijing 100072,China)
出处 《火力与指挥控制》 CSCD 北大核心 2021年第6期135-140,共6页 Fire Control & Command Control
基金 国家自然科学基金资助项目(51305457)。
关键词 单腿平台 重心动力学 虚拟模型 运动控制 single-leg platform centroidal dynamics virtual model motion control
  • 相关文献

参考文献4

二级参考文献42

  • 1G. A. Pratt. Low impedance walking robots. Annual Meeting of the Society-for-lntegrative-and-Comparative-Biolog, Chicago: Oxford University Press, 2002:174 - 181.
  • 2J. Buchli, M. Kalakrishnan, M. Mistry, et al. Compliant quadruped locomotion over rough terrain. IEEE/RSJ International Conference on Intelligent Robots and Systems, St Louis: IEEE, 2009: 814- 820.
  • 3N. Tsagarakis, S. Morfey, G. Medrano-Cerda, et al. Compliant humanoid COMAN: Optimal joint stiffness tuning for modal frequency control. IEEE International Conference on Robotics and Automation, Karlsruhe: IEEE, 2013:673 -678.
  • 4N. Paine, S. Oh, L. Sentis. Design and control considerations for high-performance series elastic actuators. IEEE/ASME Transactions on Mechatronics, 2014, 19(3): 1080 - 1091.
  • 5A. AIbu-Schaffer, S. Haddadin, C. Ott, et al. The DLR lightweight robot: Design and control concepts for robots in human environments. Industrial Robot: An International Journal, 2007, 34(5): 376 - 385.
  • 6D. P. Ferris, M. Louie, C. T. Farley. Running in the real world: adjusting leg stiffness for different surfaces. Proceedings of the Royal Society B: Biological Sciences, 1998, 265(1400): 989 - 994.
  • 7N. Hogan. Impedance control: An approach to manipulation Part I1: Implementation. Journal of Dynamic Systems, Measurement, and Control, 1985, 107(1 ): 8 - 16.
  • 8O. Khatib. A unified approach for motion and force control of robot manipulators: The operational space formulation. Journal of Robotics and Automation. 1987:43 - 53.
  • 9M. H. Raibert, J. J. Craig. Hybrid position/force control of manipulators. Journal of Dynamic Systems, Measurement, and Control, 1981, 103(2): 126- 133.
  • 10Pratt, C. Chew, A. Torres, et al. Virtual model control: An intuitive approach for bipedal locomotion. International Journal of Robotics Research, 2001, 20(2): 129 - 143.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部