期刊文献+

融合朴素贝叶斯与决策树的用户评论分类算法 被引量:5

User Comment Classification Algorithm Based on Naive Bayes and Decision Tree
下载PDF
导出
摘要 为了实现对用户评论的商业研究价值提取,解决互联网产品后续优化和增进服务问题,提出一种融合朴素贝叶斯与决策树的改进算法,处理文本中的噪声,避免零概率和属性值缺失的问题,从而提高分类准确率。该算法首先对用户评论数据作预处理,然后运用概率优化后的朴素贝叶斯处理空缺属性值,最后用决策树从积极和消极角度将数据进行分类。对微信公众号用户评论数据集进行实验,结果表明改进后的算法准确率达80.27%,比传统方法提高0.5%。 In order to extract the business research value of user reviews and solve the problems of subsequent optimization and service improvement of Internet products,an improved algorithm combining naive Bayes and decision tree is proposed to deal with the noise in text and avoid the problems of zero probability and missing attribute values,so as to improve the classification accuracy.Firstly,the algorithm preprocesses the user comment data,then uses the probability optimized naive Bayes to deal with the missing attribute values,and finally uses the decision tree to classify the data from the positive and negative perspectives.The experimental results show that the algorithm achieves a 80.27% accuracy rate of 0.5% compared with the traditional method through experiments on WeChat official account user reviews dataset.
作者 贾晓帆 何利力 JIA Xiao-fan;HE Li-li(School of Informatics and Electronics,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《软件导刊》 2021年第7期1-5,共5页 Software Guide
基金 国家重点研发计划项目(2018YFB1700702)。
关键词 用户评论分类 决策树算法 朴素贝叶斯 user review classification decision tree algorithm Naive Bayes
  • 相关文献

参考文献3

二级参考文献63

  • 1王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 3卢苇,彭雅.几种常用文本分类算法性能比较与分析[J].湖南大学学报(自然科学版),2007,34(6):67-69. 被引量:31
  • 4Pompe U, Kononenko I. Naive Bayesian classifier within ILP-R// Proceedings of the 5th International Workshop on Inductive Logic Programming. Belgie: Katholleke Universiteit Leuven, 1995: 417
  • 5Peter A, Nicolas L. 1BC: a first-order Bayesian classifier///Proceedings of the 9th International Workshop on Inductive Logic Programming. Berlin: Springer-Verlag, 1999, 1634:92
  • 6Nicolas L, Peter A. IBC2: a true first-order Bayesian classifier//Proceedings of the 12th International Conference on Inductive Logic Programming. Berlin: Springer-Verlag, 2002:133
  • 7Peter A, Nicolas L. Naive Bayesian classification of structured data. Mach Learn, 2004, 57(3): 233
  • 8Ceci M, Appice A, Malerba D. Mr-SBC: a multi-relational Naive Bayesian classifier// Lecture Notes in Artificial Intelligence. Berlin: Springer, 2003 : 95
  • 9Niels L, Kristian K, Luc D. nFOIL: integrating Naive Bayes and FOIL//Proceedings of the 20th National Conference on Artificial Intelligence. Cambridge, 2005:795
  • 10Yin X X, Han J W, Yang J, et al. Efficient classification across multiple database relations: a CrossMine approach. IEEE Trans Knowl Data Eng, 2006, 18 (6): 770

共引文献93

同被引文献49

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部